Skip to main content
Log in

Experimental design-based development and single laboratory validation of a capillary zone electrophoresis method for the determination of the artificial sweetener sucralose in food matrices

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A capillary zone electrophoresis (CZE) method, optimised chemometrically, underwent a complete in-house validation protocol for the qualification and quantification of sucralose in various foodstuffs. Separation from matrix components was obtained in a dinitrobenzoic acid (3 mM)/sodium hydroxide (20 mM) background electrolyte with a pH of 12.1, a potential of 0.11 kV cm−1 and a temperature of 22 °C. Detection was achieved at 238 nm by indirect UV. Screening, optimisation and robustness testing were all carried out with the aid of experimental design. Using standard addition calibration, the CZE method has been applied to still, carbonated and alcoholic beverages, yoghurts and hard-boiled candy. The method allows the detection of sucralose at >30 mg kg−1, with a linearity range of 50–500 mg kg−1, making it suitable for implementation of the recently amended “Sweeteners for use in foodstuffs” Directive (European Parliament and Council (2003) Off J L237:3–12), which set maximum usable doses of sucralose for many foodstuffs, most ranging from 200 mg kg−1 to 450 mg kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. EC (2003) European Parliament and Council Directive 2003/115/EC; Amendment to European Parliament and Council Directive 94/35/EC on sweeteners for use in foodstuffs. Off J L114:15–17, L237:3–12

    Google Scholar 

  2. Tate & Lyle (2003) Analytical methodology: analysis of sucralose in food products. Pamphlet from Tate & Lyle, Reading, UK

    Google Scholar 

  3. Spangenberg B, Stroka J, Arranz I, Anklam E (2003) J Liquid Chromatogr R T 26:2729–2739

    Article  CAS  Google Scholar 

  4. Dionex Corporation (2004) Dionex application note 159. Dionex Corporation, Sunnyvale, CA, USA

  5. Stroka J, Dossi N, Anklam E (2003) Food Addit Contam 20:524–527

    Article  CAS  PubMed  Google Scholar 

  6. El Rassi Z (1996) Electrophoresis 17:275–437

    CAS  PubMed  Google Scholar 

  7. Hoffstetter-Kuhn S, Paulus A, Gassmann E, Widmer HM (1991) Anal Chem 63:1541–1547

    Article  CAS  Google Scholar 

  8. Wang T, Hartwick RA (1992) J Chromatogr 607:119–125

    Article  CAS  Google Scholar 

  9. Nielen MWF (1991) J Chromatogr 588:321–326

    Article  CAS  Google Scholar 

  10. Beck W, Engelhardt H (1992) Chromatographia 33:313–316

    CAS  Google Scholar 

  11. Vindevogel J, Sandra P (1991) Anal Chem 63:1530–1536

    Article  CAS  Google Scholar 

  12. Rogan MM, Altria KD, Goodall DM (1994) Chromatographia 38:723–729

    CAS  Google Scholar 

  13. Ng CL, Lee HK, Li SFY (1993) J Chromatogr 598:133–138

    Article  Google Scholar 

  14. Ng CL, Ong CP, Lee HK, Li SFY (1992) Chromatographia 34:166–172

    CAS  Google Scholar 

  15. Ng CL, Toh YL, Li SFY, Lee HK (1993) J Liquid Chromatogr 16:3653–3666

    CAS  Google Scholar 

  16. Altria KD, Filbey SD (1994) Chromatographia 39:306–310

    CAS  Google Scholar 

  17. Filbey SD, Altria KD (1994) J Capillary Electrop 1:190–195

    CAS  Google Scholar 

  18. Umetri AB (1998) Introduction to design of experiments. Umetri AB, Umea, Sweden

  19. Mullholland M, Waterhouse J (1987) J Chromatogr 395:539–551

    Article  Google Scholar 

  20. Andersson AM, Karlsson A, Josefson M, Gottfries J (1994) Chromatographia 38:715–722

    CAS  Google Scholar 

  21. Righezza M, Chretien JR (1993) Chromatographia 38:125–129

    Google Scholar 

  22. Berridge JC (1989) Chemometrics Intell Lab Syst 5:195–207

    Article  CAS  Google Scholar 

  23. Mulholland M, Waterhouse J (1988) Chromatographia 25:769–774

    CAS  Google Scholar 

  24. Mulholland M (1988) Trends Anal Chem 7:383–389

    Article  CAS  Google Scholar 

  25. Thomas BR, Ghodbane S (1993) J Liquid Chromatogr 16:1983–2006

    CAS  Google Scholar 

  26. EC (2002) European Parliament and Council Directive 2002/657/EC; implementing European Parliament and Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off J L:221/8

    Google Scholar 

  27. Thompson M, Ellison SLR, Wood R (2002) Pure Appl Chem 74(5):835–855

    CAS  Google Scholar 

  28. Quinlan ME, Jenner MR (1990) J Food Sci 55:1:244–246

    Google Scholar 

Download references

Acknowledgements

The authors wish to express sincere gratitude to Dr. Mary Quinlan of Tate & Lyle for provision of pure sucralose and genuine samples, and to Dr. Fernando Cordeiro Raposo for advice on the use of chemometric experimental design for this optimisation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josephine McCourt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCourt, J., Stroka, J. & Anklam, E. Experimental design-based development and single laboratory validation of a capillary zone electrophoresis method for the determination of the artificial sweetener sucralose in food matrices. Anal Bioanal Chem 382, 1269–1278 (2005). https://doi.org/10.1007/s00216-005-3258-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3258-5

Keywords

Navigation