Skip to main content
Log in

Effects of diclofenac on EPC liposome membrane properties

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work the interaction of a non-steroidal anti-inflammatory drug (NSAID), diclofenac, with egg yolk phosphatidylcoline (EPC) liposomes, used as cell-membrane models, was quantified by determination of the partition coefficient. The liposome/aqueous phase partition coefficient was determined by derivative spectrophotometry, fluorescence quenching, and measurement of zeta-potential. Theoretical models based on simple partition of the diclofenac between two different media, were used to fit the experimental data, enabling the determination of Kp. The three techniques used yielded similar results. The effects of the interaction on the membrane’s characteristics were further evaluated, either by studying membrane potential changes or by effects on membrane fluidity. The liposome membrane potential and the size and size-homogeneity of liposomes were measured by light scattering. The effects of diclofenac on the internal viscosity or fluidity of the membrane were determined by use of spectroscopic probes—a series of n-(9-anthroyloxy) fatty acids in which the carboxyl terminal group is located at the interfacial region of the membrane and the fluorescent anthracene group is attached at different positions along the fatty acid chain. The location of the diclofenac on the membrane was also evaluated, by fluorescence quenching using the same series of fluorescent probes. Because the fluorescent anthracene group is attached at different positions along the fatty acid chain, it is possible to label at a graded series of depths in the bilayer. The interactions between the drug and the probe are a means of predicting the location of the drug on the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kitchen EA, Dawson W, Rainsford KD, Cawston T (eds) (1985) Anti-inflammatory and anti-rheumatic drugs. CRC Press, Boca Raton

    Google Scholar 

  2. Vane JR (1971) Nature 231:232–235

    Google Scholar 

  3. Beccerica E, Ferretti G, Curatola G, Cervini C (1990) Pharmacol Res 22:277–285

    Google Scholar 

  4. Beccerica E, Piergiacomi G, Curatola G, Ferretti G (1989) Pharmacology 38:16–22

    Google Scholar 

  5. Knazek RA, Liu SC, Dave JR, Christy RJ, Keller JA (1981) Prostaglandin Med 6:403–411

    Google Scholar 

  6. Simonetti O, Ferretti G, Offidani AM, Gervasi P, Curatola G, Bossi G (1996) Arch Dermatol Res 288:51–54

    Google Scholar 

  7. Bomalaski JS, Hirata F, Clarke MA (1986) Biochem Biophys Res Commun 139:115–121

    Google Scholar 

  8. Balon K, Riebesehl BU, Muller BW (1999) J Pharm Sci 88:802–806

    Google Scholar 

  9. Takács-Novák K, Avdeef A, Box KJ, Podányi B, Szász G (1994) J Pharm Biomed 12:1369–1377

    Google Scholar 

  10. Lacowicz JR (ed) (1999) Principles of fluorescence spectroscopy. Kluwer Academic/Plenum Press, New York

    Google Scholar 

  11. Fendler JH (1980) J Phys Chem 84:1485–1491

    Google Scholar 

  12. Miller MA, Sagnella GA, Markandu ND, MacGregor GA (2001) Clin Sci 100:653–658

    Google Scholar 

  13. Johns SR, Willing RI, Thulborn KR, Sawyer WH (1979) Chem Phys Lipids 24:11–16

    Google Scholar 

  14. Thulborn KR, Sawyer WH (1978) Biochim Biophys Acta 511:125–140

    Google Scholar 

  15. Tilley LM, Thulborn KR, Sawyer WH (1979) J Biol Chem 254:2592–2594

    Google Scholar 

  16. Coutinho A, Prieto M (1993) J Chem Educ 70:425–428

    Google Scholar 

  17. Gran G (1952) Analyst 77:661–671

    Google Scholar 

  18. Gans P, Sabatini A, Vacca A (1999) Anal Chim 89:45–49

    Google Scholar 

  19. Lasic DD (ed) (1993) Liposomes—from physics to applications. Elsevier, New York

    Google Scholar 

  20. McClare CWF (1971) Anal Biochem 39:527–530

    Google Scholar 

  21. New RRC (ed) (1990) Liposomes—a practical approach. Oxford University Press, New York

    Google Scholar 

  22. Matos C, Castro B, Gameiro P, Lima JLFC, Reis S (2004) Langmuir 20:369–377

    Google Scholar 

  23. Kitamura K, Imayoshi N, Goto T, Shiro H, Mano T, Nakai Y (1995) Anal Chim Acta 304:101–106

    Google Scholar 

  24. Welti R, Mullikin LJ, Yoshimura T, Helmkamp GM Jr (1984) Biochemistry 23:6086–6091

    Google Scholar 

  25. Ferreira H, Lúcio M, Castro B, Gameiro P, Lima JLFC, Reis S (2003) Anal Bioanal Chem 377:293–298

    Google Scholar 

  26. White SH, Jacobs RE, King GI (1987) Biophys J 52:663

    Google Scholar 

  27. Blatt E, Ghiggino KP, Sawyer WH (1981) J Chem Soc 177:2551–2558

    Google Scholar 

  28. Blatt E, Sawyer WH (1985) Biochim Biophys Acta 822:43

    Google Scholar 

  29. Haigh EA, Thulborn KR, Sawyer WH (1979) Biochemistry 18:3525–3532

    Google Scholar 

  30. Putilina T, Sittenfeld D, Chader GJ, Wiggert B (1993) Biochemistry 32:3797–3803

    Google Scholar 

  31. Vermeir M, Boens N (1992) Biochim Biophys Acta 1104:63–72

    Google Scholar 

  32. Eisenberg M, Gresalfi T, Riccio T, MacLaughlin S (1979) Biochemistry 18:5213–5223

    Google Scholar 

  33. Winiski AP, Eisenberg M, Langner M, MacLaughlin S (1988) Biochemistry 27:386–392

    Google Scholar 

  34. Rooney EK, East JM, Jones OT, McWhieter J, Simmonds AC, Lee AG (1983) Biochim Biophys Acta 728:159–170

    Google Scholar 

  35. MacLaughlin S, Harary H (1976) Biochemistry 15:1941–1948

    Google Scholar 

  36. Connors KA (ed) (1987) Binding constants. The measurement of molecular complex stability. Wiley, New York

    Google Scholar 

  37. Abrams FS, London E (1993) Biochemistry 32:10826–10831

    Google Scholar 

  38. Castro B, Gameiro P, Lima JLFC, Matos C, Reis S (2001) Colloid Surf A 190:205–212

    Google Scholar 

  39. Gazzara JA, Phillips MC, Lund-Katz S, Palgunachari MN, Segrest JP, Anantharamaiah GM, Rodrigueza WV, Snow JW (1997) J Lipid Res 38:2147–2154

    Google Scholar 

  40. Thulborn KR, Tilley LM, Sawyer WH, Treloar FE (1979) Biochim Biophys Acta 558:166–178

    Google Scholar 

  41. Villalaín J, Prieto M (1991) Chem Phys Lipids 59:9–16

    Google Scholar 

  42. Vincent M, de Foresta B, Gallay J, Alfsen A (1982) Biochemistry 21:708–716

    Google Scholar 

  43. Lúcio M, Ferreira H, Lima JLFC, Matos C, Castro B, Reis S (2004) Phys Chem Chem Phys 6:1493–1498

    Google Scholar 

  44. Giuliano F, Ferraz JGP, Pereira R, de Nucci G, Warner TD (2001) Eur J Pharmacol 426:95–103

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank FCT and FEDER for financial support through the contract POCTI/FCB/47186/2002. Two of us, H.F. and M.L., thank FCT for fellowships BD 6829/01 and BD 21667/99, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salette Reis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, H., Lúcio, M., Lima, J.L.F.C. et al. Effects of diclofenac on EPC liposome membrane properties. Anal Bioanal Chem 382, 1256–1264 (2005). https://doi.org/10.1007/s00216-005-3251-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3251-z

Keywords

Navigation