Skip to main content
Log in

Fast fingerprinting by MALDI–TOF mass spectrometry of urinary sediment glycosphingolipids in Fabry disease

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fabry disease (FD) is an X-linked inborn error of glycosphingolipid (GSL) metabolism, caused by a deficiency of the lysosomal α-galactosidase A, which results in high levels in lysosomes and biological fluids of globotriaosylceramide (Gb3) and digalactosylceramide (Ga2), also known as galabiosylceramide. We report here a detailed study of the molecular species of GSLs in urinary samples obtained from hemizygous and heterozygous patients by use of matrix-assisted laser desorption ionisation and tandem mass spectrometry (MALDI–MS–MS). Twenty-two and fifteen molecular species were identified in the globotriaosylceramide and digalabiosylceramide series, respectively. The major sphingoid base was sphingosine (d18:1), and dihydrosphingosine (C18:0) and sphingadienine (d18:2) were also present. The molecular profiles obtained by MALDI–TOF-MS enabled us to show significant differences between GSLs composition for young, adult or atypic hemizygote and heterozygote patients. Thus, MALDI–TOF-MS and MS–MS proved a powerful tool for screening a population of patients with clinical signs suggestive of FD by direct and rapid GSL fingerprinting and identification, and for study of the biological processes occurring in glycosphingolipid accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Desnick RJ, Sweeley CC, Krivit W (1970) J Lipid Res 11:31–37

    CAS  PubMed  Google Scholar 

  2. Brady RO, Gal AE, Bradley RM, Martensson E, Warshaw AL, Laster L (1967) N Engl J Med 276:1163–1167

    CAS  PubMed  Google Scholar 

  3. Germain DP, Benistan K, Boutouyrie P, Mutschler C (2005) Clin Gen (in press)

  4. Lyon MF (1961) Nature 190:372–373

    CAS  PubMed  Google Scholar 

  5. Shoichiro N, Toshihiro T, Maeda M, Chihaya K, Akihiro T, Minoru T, Aichi Y, Masaru K, Hidemasa H, Hitoshi S, Hiromitsu T (1995) N Engl J Med 333:288–293

    Article  CAS  PubMed  Google Scholar 

  6. Nakao S, Kodama C, Takenaka T, Tanaka A, Yasumoto Y, Yoshida A, Kanzaki T, Enriquez AL, Eng CM, Tanaka H, Tei C, Desnick RJ (2003) Kidney Int 64:801–807

    Article  PubMed  Google Scholar 

  7. Bach G, Roenmann E, Karni A, Cohen T (1982) Clin Gen 21:59–64

    CAS  Google Scholar 

  8. Vance DE, Krivit W, Sweeley CS (1969) J Lipid Res 10:188–192

    CAS  PubMed  Google Scholar 

  9. Schibanoff JM, Kamoshita S, O’Brien JS (1969) J Lipid Res 10:515–520

    CAS  PubMed  Google Scholar 

  10. Roy S, Gaudin K, Germain DP, Baillet A, Prognon P, Chaminade P (2004) J Chromatogr B 805:331–337

    Article  CAS  Google Scholar 

  11. Ullman MD, McCluer RH (1977) J Lipid Res 18:371–378

    CAS  PubMed  Google Scholar 

  12. Gross SK, McCluer RH (1979) Anal Biochem 102:429–433

    Article  Google Scholar 

  13. Ullman MD, Pyeritz RE, Moser HW, Wenger DA, Lolodny EH (1980) Clin Chem 26:1499–1503

    CAS  PubMed  Google Scholar 

  14. Zeidner KM, Desnick RJ, Ioannou YA (1999) Anal Biochem 267:104–113

    Article  CAS  PubMed  Google Scholar 

  15. Eng CM, Guffon N, Wilcox WR, Germain DP, Lee P, Waldek S, Caplan L, Linhorst GE, Desnick RJ (2001) N Engl J Med 345:9–16

    Article  CAS  PubMed  Google Scholar 

  16. Vance DE, Swelley CC (1967) J Lipid Res 8:621–630

    CAS  PubMed  Google Scholar 

  17. Karas M, Bachmann D, Bahr U, Hillenkamp F (1987) Int J Mass Spectrom Ion Processes 78:53–68

    Google Scholar 

  18. Boscaro F, Pieraccini G, la Marca G, Bartolucci G, Luceri C, Luceri F, Moneti G (2002) Rapid Commun Mass Spectrom 16:1507–1514

    Article  CAS  PubMed  Google Scholar 

  19. Nelson BC, Roddy T, Araghi S, Wilkens D, Thomas JJ, Zhang K, Sung C, Richards SM (2004) J Chromatogr B 807:127–134

    Article  Google Scholar 

  20. Mills K, Johnson A, Winchester B (2002) FEBS 515:171–176

    Article  CAS  Google Scholar 

  21. Schiller J, Arnhold J, Benard S, Müller M, Reichl S, Arnold K (1999) Anal Biochem 267:6–56

    Article  Google Scholar 

  22. Hunnam V, Harvey DJ, Priestman D, Bateman RH, Bordoli RS, Tyldesley R (2001) J Am Soc Mass Spectrom 12:1220–1225

    Article  CAS  PubMed  Google Scholar 

  23. Folch J, Lees M, Sloane Stanley GH (1957) J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  24. Karas M, Hillenkamp F (1988) Anal Chem 60:2299–301

    Article  CAS  PubMed  Google Scholar 

  25. Olling A, Breimer ME, Peltomaa E, Samuelson BE, Ghardashkhani S (1998) Rapid Commun Mass Spectrom 12:637–645

    Article  CAS  PubMed  Google Scholar 

  26. Olsson B-M, Karlsson H, Larsson T, Lanne B (1999) J Mass Spectrom 34:942–951

    Article  CAS  PubMed  Google Scholar 

  27. Levery SB, Toledo MS, Doong RL Straus AH, Takahashi HK (2000) Rapid Commun Mass Spectrom 14:551–563

    Article  CAS  PubMed  Google Scholar 

  28. Hsu FF, Turk J (2001) J Am Soc Mass Spectrom 12:61–79

    Article  CAS  PubMed  Google Scholar 

  29. Costello CE, Vath JE (1990) Methods Enzymol 193:738–768

    CAS  PubMed  Google Scholar 

  30. Ann Q, Adams J (1993) Anal Chem 65:7–13

    Article  CAS  Google Scholar 

  31. Takakuwa N, Kinoshita M, Oda Y, Ohnishi M (2002) FEMS Yeast Res 2:533–538

    Google Scholar 

  32. Imai H, Morimoto Y, Tamura K (2000) J Plant Physiol 157:453–456

    CAS  Google Scholar 

  33. Renkonen O, Hirvisalo EL (1982) J Lipid Res 10:687–693

    Google Scholar 

  34. Ando S, Isobe M, Nagai Y (1976) Biochim Biophys Acta 424:98–105

    CAS  PubMed  Google Scholar 

  35. Colsch B., Afonso C, Popa I, Portoukalian J, Fournier F, Tabet JC, Baumann N (2004) J Lipid Res 45:281–286

    Article  CAS  PubMed  Google Scholar 

  36. Cable WJL, McCluer RH, Kolodny EH, Ullman MD (1982) Neurology 32:1139–1145

    CAS  PubMed  Google Scholar 

  37. Fogazzi GB, Garigali G (2003) Curr Opin Nephrol Hypertens 12:625–632

    PubMed  Google Scholar 

  38. Germain DP (2002) Expert Opin Investig Drugs 11:1467–1476

    Article  CAS  PubMed  Google Scholar 

  39. Schiffmann R, Kopp JB, Austin HA, Sabnis S, Moore DF, Weibel T, Balow JE, Brady RO (2001) J Am Med Assoc 285:2743–2749

    Article  CAS  Google Scholar 

  40. Wilcox WR, Banikazemi M, Guffon N, Waldek S, Lee P, Linthorst GE, Desnick RJ, Germain DP and International Fabry Disease Study Group (2004) Am J Hum Genet 75:65–74

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.T. is indebted to the Institut de Chimie des Substances Naturelles (CNRS) for a PhD research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Laprévote.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Touboul, D., Roy, S., Germain, D.P. et al. Fast fingerprinting by MALDI–TOF mass spectrometry of urinary sediment glycosphingolipids in Fabry disease. Anal Bioanal Chem 382, 1209–1216 (2005). https://doi.org/10.1007/s00216-005-3239-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3239-8

Keywords

Navigation