Skip to main content
Log in

Extraction procedures for chemical speciation of arsenic in atmospheric total suspended particles

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An arsenic chemical speciation study was performed in 2000, using air filters on which total suspended particles (TSP) were collected, from the city of Huelva, a medium size city with huge industrial influence in SW Spain. Different procedures for extraction of the arsenic species were performed using water, NH2OH.HCl, and H3PO4 solutions, with either microwave or ultrasonic radiation. The best optimised extraction methods were use of 100 mmol L−1 NH2OH.HCl and 10 mmol L−1 H3PO4 and microwave radiation for 4 min. High-performance liquid chromatography coupled with hydride generation and atomic fluorescence spectrometry (HPLC–HG–AFS) was employed for determination of the arsenic species. The results from 12 TSP air filters collected on a monthly basis showed extraction was quantitative (94% with NH2OH.HCl and 86% H3PO4). Only inorganic arsenic species (arsenite and arsenate) were detected. The mean arsenite concentration was 1.2±0.3 ng m−3 (minimum 0.3 ng m−3, maximum 1.8 ng m−3). The mean arsenate concentration was 10.4±1.8 ng m−3, with greater monthly variations than arsenite (minimum 2.1 ng m−3, maximum 30.6 ng m−3). The high level of arsenic species in the TSP samples can be related to a copper smelter located in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. WHO (2001) Air quality guidelines for Europe, 2nd edn. WHO Regional Publications, Regional Office for Europe, Copenhagen, Denmark

  2. Van Leeuwen FXR (2002) Toxicology 181–182:355–359

    Google Scholar 

  3. European Commission (2003) Proposed directive 2003/0164 of As, Cd, Ni and PAHs in the air

  4. Querol X, Alastuey A, de la Rosa J, Sánchez de la Campa A, Plana F, Ruiz CR (2002) Atmos Environ 36:3113–3125

    Google Scholar 

  5. Thomaidis NS, Bakeas EB, Siskos PA (2003) Chemosphere 52:959–966

    Google Scholar 

  6. Fernández Álvarez F, Ternero Rodríguez M, Fernández Espinosa AJ, Gutiérrez Dabán A (2004) Anal Chim Acta 524:33–40

    Google Scholar 

  7. Freitas MC, Pacheco AMG, Ventura MG (2004) Nucl Instrum Methods Phys Res B 219–220:153–156

    Google Scholar 

  8. Obiols J, Devesa R, Sol A (1986) Toxicol Environ Chem 13:121–128

    Google Scholar 

  9. Fernández Espinosa AJ, Ternero Rodriguez M, Barragán de la Rosa J, Jiménez Sánchez HP (2002) Atmos Environ 36:773–780

    Article  Google Scholar 

  10. Slejkovec Z, Salma I, van Eltern JT, Zemplén-Papp E (2000) Fresenius’ J Anal Chem 366:830–834

    Google Scholar 

  11. Pershagen G, Lind B, Bjorklund NE (1982) Environ Res 29:425–434

    Google Scholar 

  12. Francesconi KA, Kuehnelt (2003) In: Frankenberger WT (ed) Environmental Chemistry of Arsenic. Marcel Dekker, New York

  13. Martin F, Gonzalez C, Bailador A, Sanchez E, Palomino I, Palacios M, Crespi SN, Gorostiza C (2001) Int J Environ Pollut 16:537–549

    Google Scholar 

  14. Acena B, Palomino I, Martín F, Palacios M (2002) Int J Environ Pollut 18:171–180

    Google Scholar 

  15. Saez M, Ballester F, Barcelo MA, Perez-Hoyos S, Bellido J, Tenias JM, Ocana R, Filgueiras A, Arribas F, Aragones N, Tobias A, Cirera L, Canada A (2002) Environ Health Perspect 110:221–228

    Google Scholar 

  16. Gómez-Ariza JL, Sánchez-Rodas D, Beltrán R, Corns W, Stockwell P (1998) Appl Organomet Chem 12:439–447

    Google Scholar 

  17. Gómez-Ariza JL, Sánchez-Rodas D, Giráldez I, Morales E (2000) Talanta 51:257–268

    Google Scholar 

  18. Sánchez-Rodas D, Geiszinger A, Gómez-Ariza JL, Francesconi KA (2002) Analyst 127:60–65

    Google Scholar 

  19. Thomas P, Finnie JK, Willimas JG (1997) J Anal At Spectrom 12:1367–1371

    Google Scholar 

  20. Gómez-Ariza, Sánchez-Rodas D, Giráldez I (1998) J Anal At Spectrom 13:1275–1379

    Google Scholar 

  21. De la Rosa J, Sánchez de la Campa A, Querol X, Alastuey A (2003) Abstract of the European aerosol conference, pp S193–S194

  22. CSIC (2002) Tercer informe del CSIC sobre la Ria de Huelva (in Spanish). http://www.csic.es/prensa/Riahuelha3.html

  23. CSIC (2002) Sexto informe del CSIC sobre la Ria de Huelva (in spanish). http://www.csic.es/prensa/viinforme.html

Download references

Acknowledgements

We would like to thank Drs Xavier Querol and Andrés Alastuey (Institute of Earth Sciences “Jaume Almera”, CSIC, Barcelona, Spain) and Dr Jesus de la Rosa (Department of Geology, University of Huelva, Spain) for kindly providing the TSP samples analysed in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Sánchez-Rodas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, V., Gómez-Ariza, J.L. & Sánchez-Rodas, D. Extraction procedures for chemical speciation of arsenic in atmospheric total suspended particles. Anal Bioanal Chem 382, 335–340 (2005). https://doi.org/10.1007/s00216-005-3189-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3189-1

Keywords

Navigation