Skip to main content
Log in

The determination of total Se in urine and serum by graphite furnace atomic absorption spectrometry using Ir as permanent modifier and in situ oxidation for complete trimethylselenonium recovery

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The present work evaluated the use of iridium (Ir) as permanent modifier for the determination of total selenium in urine and serum by graphite furnace atomic absorption spectrometry. Concerning urine, the presence of trimethylselenonium (TMSe+) was especially considered. Pyrolysis and atomization temperatures of 1,000 and 2,100°C, respectively, were used. For nondigested urine and serum samples, 0.2% v/v HNO3 and Triton X-100 were used as diluents, respectively, and the same initial platform Ir treatment was effective for up to 1,100 atomization cycles. Good precision [less than 5% relative standard deviation (RSD)] can be achieved with the proposed method. Low TMSe+ recovery was observed for nondigested urine samples. Thus, if this species is to be considered in urine analysis, a previous external mineralization step was found to be necessary. Alternatively, an in situ oxidation treatment was developed. Detection limits of 8, 10, and 7 μg l−1 were obtained after dilution, microwave-assisted digestion, and in situ oxidation procedures, respectively. The accuracy of the method was validated by the analysis of certified reference or commercial quality control materials and spiked samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Wachowicz B, Zbikowsla HM, Nowak P (2001) Cell Mol Biol Lett 6:375–381

    Google Scholar 

  2. World Health Organization (1996) Trace elements in human nutrition and health (Portuguese translation). WHO, Geneva, pp 96–105

    Google Scholar 

  3. Deagen JT, Beilstein MA, Whanger PD (1991) J Inorg Biochem 41:261–268

    Article  PubMed  CAS  Google Scholar 

  4. Hasunuma R, Ogawa T, Kawanishi Y (1993) Bull Environ Contam Toxicol 50:19–23

    Article  PubMed  CAS  Google Scholar 

  5. Alaejos MS, Romero CD (1993) Clin Chem 39:2040

    PubMed  Google Scholar 

  6. Kvicala J, Zamrazil V, Jiranek V (1999) Biol Trace Elem Res 71–72:31–39

    Article  Google Scholar 

  7. Sabe R, Rubio R, Garcia Beltran L (2001) Anal Chim Acta 436:215–221

    Article  CAS  Google Scholar 

  8. Deaker M, Maher W (1995) J Anal At Spectrom 10:423–431

    Article  CAS  Google Scholar 

  9. Welz B, Schlemmer G, Voelkopt U (1984) Spectrochim Acta B Atom Spectrosc 39:501–510

    Article  Google Scholar 

  10. Chatterjee A, Shibata Y (1999) Anal Chim Acta 398:273–278

    Article  CAS  Google Scholar 

  11. Nixon DE, Moyer TP, Burritt MF (1999) Spectrochim Acta B Atom Spectrosc 54:931–942

    Article  Google Scholar 

  12. Gammelgaard B, Jons O, Bendahl L (2001) J Anal At Spectrom 16:339–344

    Article  CAS  Google Scholar 

  13. Bulska E, Pyrzynska K (1997) Spectrochim Acta B Atom Spectrosc 52:1283–1291

    Article  Google Scholar 

  14. Sabe R, Rubio R, Garcia Beltran L (1999) Anal Chim Acta 398:279–287

    Article  CAS  Google Scholar 

  15. Johannsen JK, Gammelgard B, Hansen SH (1993) J Anal At Spectrom 8:999–1004

    Article  Google Scholar 

  16. Leblanc A (1996) J Anal At Spectrom 11:1093–1098

    Article  CAS  Google Scholar 

  17. Perez-Corona MT, de La Calle-Guntiñas MB, Madrid Y, Cámara C (1995) J Anal At Spectrom 10:321–324

    Article  CAS  Google Scholar 

  18. Tsalev DL, Slaveykova VI, Lampugnani L, D’Ulivo A, Georgieva R (2000) Spectrochim Acta B Atom Spectrosc 55:473–490

    Article  Google Scholar 

  19. Rademeyer CJ, Radziuk B, Romanova N, Skaugset NP, Skogstad A, Thomassen Y (1995) J Anal At Spectrom 10:739–745

    Article  CAS  Google Scholar 

  20. Giacomelli MBO, Lima MC, Stupp V, de Carvalho RM, da Silva JBB, Barrera PB (2002) Spectrochim Acta B Atom Spectrosc 57:2151–2157

    Article  Google Scholar 

  21. Rosa CR, Freschi GPG, De Moraes M, Neto JAG, Nobrega JA, Nogueira ARA, Sacramento LV (2003) J Agric Food Chem 51:3920–3923

    Article  PubMed  CAS  Google Scholar 

  22. Bulska E, Piascik M, Pyrzynska K (2000) Anal Lett 33:1399–1408

    CAS  Google Scholar 

  23. Grinberg P, de Campos RC (2001) Spectrochim Acta B Atom Spectrosc 56:1831–1843

    Article  Google Scholar 

  24. Carnick GR, Manning DC, Slavin W (1983) Analyst 108:1297–1312

    Article  Google Scholar 

  25. Laborda F, Chakraborti D, Mir JM, Castillo JR (1993) J Anal At Spectrom 8:643–648

    Article  CAS  Google Scholar 

  26. Olivas RM, Quevauviller P, Donard OFX (1998) Fresenius’ J Anal Chem 360:512–519

    Article  Google Scholar 

  27. Tsalev DL, Lampugnani L, D’Ulivo A, Petrov II, Georgieva R, Marcucci K, Zamboni R (2001) Microchem J 70:103–113

    Article  CAS  Google Scholar 

  28. Sabe R, Rubio R, Garcia Beltran L (2000) Anal Chim Acta 419:121–135

    Article  CAS  Google Scholar 

  29. Feuerstein M, Schlemmer G (1999) At Spectr 20:180–185

    CAS  Google Scholar 

  30. Iyengar GV (1989) Elemental analysis of biological systems. Biomedica, environmental composition and methodological aspects of trace elements, chap 9. CRC, Boca Raton, FL, pp 162–164

    Google Scholar 

  31. Correia PRM, Oliveira Ed, Oliveira PV (2002) Talanta 57:527–535

    Article  CAS  Google Scholar 

  32. Zanão RA, Barbosa F, Souza SS, Krug FJ, Abdalla AL (2002) Spectrochim Acta B Atom Spectrosc 57:291–301

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Brazilian National Research Council for the financial support, to the Sergio Franco Laboratories for the body fluids, and to Dr. B. Welz (Federal University of Santa Catarina, Brazil) for the donation of the organo Se compounds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinaldo Calixto de Campos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinberg, P., Gonçalves, R.A. & de Campos, R.C. The determination of total Se in urine and serum by graphite furnace atomic absorption spectrometry using Ir as permanent modifier and in situ oxidation for complete trimethylselenonium recovery. Anal Bioanal Chem 383, 1044–1051 (2005). https://doi.org/10.1007/s00216-005-0014-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-0014-9

Keywords