Skip to main content
Log in

Use of near-infrared reflectance spectroscopy in predicting nitrogen, phosphorus and calcium contents in heterogeneous woody plant species

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Near-infrared reflectance spectroscopy was applied to determine nitrogen (N), phosphorus (P) and calcium (Ca) content in leaf samples of 18 woody species. A total of 183 samples from mountain, riparian and dry areas from the Central–Western Iberian Peninsula were collected for this purpose. The wide intervals of variation observed in nutrient concentrations (6.6–45.0 g kg−1 for N, 0.24–2.97 g kg−1 for P, and 1.00–20.06 g kg−1 for Ca) were due to the great heterogeneity of the samples. To develop calibration equations, multiple linear regression, and partial least-squares regression (PLSR) were used. In both cases, three mathematical transformations of the data were applied: log1/R and first and second derivatives. The best calibration statistics were obtained using PLSR and derivative transformations (second derivative for N and first derivative for P and Ca). The following coefficients of multiple determination (R2) and standard errors of cross validation were obtained: 0.99 and 0.93 for N, 0.94 and 0.15 for P, and 0.95 and 0.88 for Ca. In the external validation the standard errors of prediction obtained were 0.76 (N), 0.11 (P) and 0.60 (Ca).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Norris KH, Barnes RF, Moore JE, Shenk JS (1976) J Anim Sci 43:889–897

    Google Scholar 

  2. Shenk JS, Westerhaus MO, Hoover MR (1979) J Dairy Sci 62:807–812

    Google Scholar 

  3. Williams P, Norris KH (eds) (1987) Near-infrared technology in the agricultural and food industries. Am Assoc Cereal Chem, Minnesota

    Google Scholar 

  4. Marten GC, Shenk JS, Barton II FE (eds) (1989) Near infrared reflectance spectroscopy (NIRS): analysis of forage quality. Agriculture handbook no 643 (revised). USDA, Washington

    Google Scholar 

  5. García-Ciudad A, García-Criado B, Pérez Corona ME, Vázquez de Aldana BR, Ruano Ramos AM (1993) J Sci Food Agric 63:419–426

    Google Scholar 

  6. Ruano-Ramos A, García-Ciudad A, García-Criado B (1999) Anim Feed Sci Technol 77:331–343

    Article  Google Scholar 

  7. Foley WJ, McIlwee A, Lawler I, Aragones L, Woolnough AP, Berding N (1998) Oecologia 116:293–305

    Article  Google Scholar 

  8. Murray I (1993) In: Davies A, Baker RD, Grant SA, Laidlaw AS (eds) Sward measurement handbook. British Grassland Society, Reading Berks, pp 286–312

    Google Scholar 

  9. Paul C (1989) In: Paul C, Zimmer E (eds) Nahinfrarotspektroskopie für Industrie und Landwirtschaft, Braunschweig, FAL, vol 107, pp 61–70

  10. Batten GD, Blakeney AB (1992) In: Hildrum KI, IsaKsson T, Naes T, Tandberg A (eds) Near infra-red spectroscopy—bridging the gap between data analysis and NIR applications. Ellis Horwood, Chichester, pp 185–190

    Google Scholar 

  11. Clark DH, Mayland HF, Lamb RC (1987) Agron J 79:485–490

    Google Scholar 

  12. Givens DI, Deaville ER (1999) Aust J Agric Res 50:1131–1145

    Google Scholar 

  13. Clark DH, Cary EE, Mayland HF (1989) Agron J 81:91–95

    Google Scholar 

  14. Vázquez de Aldana BR, García Criado B, García Ciudad A, Pérez Corona ME (1995) Commun Soil Sci Plant Anal 26:1383–1396

    Google Scholar 

  15. Morón A, Cozzolino D (2002) J Agric Sci 139:413–423

    Article  Google Scholar 

  16. Batten GD, Ciavarella S, Blakeney AB (2003) In: 11th international conference on near infrared spectroscopy, abstracts book, Córdoba, p 5.15

  17. Meuret M, Dardenne P, Biston R, Poty O (1993) J Near Infrared Spectrosc 1:45–54

    Google Scholar 

  18. Bolster KL, Martin ME, Aber JD (1996) Can J For Res 26:590–600

    Google Scholar 

  19. McIlwee AM, Lawler IR, Cork SJ, Foley WJ (2001) Oecologia 128:539–548

    Article  Google Scholar 

  20. García Ciudad A, Fernández Santos B, Vázquez de Aldana BR, Zabalgogeazcoa I, Gutiérrez MY, García Criado B (2004) Commun Soil Sci Plant Anal 35:665–678

    Article  Google Scholar 

  21. Flinn PC, Edwards NJ, Oldham CM, McNeill DM (1996) In: Davies AMC, Williams P (eds) Near infrared spectroscopy: the future waves. NIR Publications, Chichester, pp 576–580

    Google Scholar 

  22. Hallett RA, Hornbeck JW, Martin ME (1997) J Near Infrared Spectrosc 5:77–82

    Google Scholar 

  23. Gillon D, Houssard C, Joffre R (1999) Oecologia 118:173–182

    Article  Google Scholar 

  24. Saiga G, Sasaki T, Nonaka K, Takahashi K, Watanabe M, Watanabe K (1989) J Japan Grassl Sci 35:228–233

    Google Scholar 

  25. De Boever JL, Eeckhout W, Boucque ChV (1994) Neth J Agric Sci 42:357–369

    Google Scholar 

  26. Mediavilla S, Escudero A (2003) Plant Ecol 168:321–332

    Article  Google Scholar 

  27. Duque Macias F (1971) Anal Edafol Agrobiol 30:207–229

    Google Scholar 

  28. Mark H, Workman J (eds) (1991) Statistics in spectroscopy. Academic, New York

    Google Scholar 

  29. Westerhaus MO (1989) In: Marten GC, Shenk JS, Barton FE (eds) Near infrared reflectance spectroscopy (NIRS): analysis of forage quality, US Dep Agric Handb 643:38–39

  30. Williams PC, Sobering DC (1993) J Near Infrared Spectrosc 1:25–32

    Google Scholar 

  31. Murray I, Williams P (1987) In: Williams P, Norris K (eds) Near-infrared technology in the agricultural and food industries. American Association of Cereal Chemists, Minnesota, pp 17–34

    Google Scholar 

  32. Ruano Ramos A, García Ciudad A, García Criado B (1999) J Sci Food Agric 79:137–143

    Google Scholar 

  33. Redshaw ES, Mathison GW, Milligan LP, Weisenburger RD (1986) Can J Anim Sci 66:103–115

    Google Scholar 

  34. Valdes EV, Young LG, McMillan I, Winch JE (1985) Can J Anim Sci 65:753–760

    Google Scholar 

  35. Shenk JS, Landa I, Hoover MR, Westerhaus MO (1981) Crop Sci 21:355–358

    Google Scholar 

  36. Convertini G, Ferri D, Lanza F, Cilardi AM (1991) In: Biston R, Bartiaux-Thill N (eds) Proceeding of 3rd international conference near infrared spectroscopy 2, Agricultural Research Center, Gembloux, pp 522–540

  37. Naes T, Martens H (1985) Commun Stat Simul Comput 14:545–576

    Google Scholar 

  38. Otto M, Wegscheider W (1985) Anal Chem 57:63–69

    Google Scholar 

  39. Lindberg W, Persson JA, Wold S (1983) Anal Chem 55:643–648

    Google Scholar 

  40. Shenk JS, Westerhaus MO (1991) Crop Sci 31:1548–1555

    Google Scholar 

  41. Shenk JS, Westerhaus MO (1993) Monograph: analysis of agriculture and food products by near-infrared reflectance spectroscopy. Infrasoft, Port Matilda

    Google Scholar 

  42. Osborne BG, Fearn T (eds) (1986) Near infrared spectroscopy in food analysis. Longman Sci Technol, Harlow, p 200

Download references

Acknowledgements

This work was supported by projects JCyL (CSI 6/01), and MCyT (AGL2002–02766 AGR-FOR). Thanks are also due J.C. Estévez, M. Miguélez and Y. Arnaiz for technical assistance. We are grateful to two anonymous reviewers for valuable comments on an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. García-Ciudad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petisco, C., García-Criado, B., Vázquez de Aldana, B.R. et al. Use of near-infrared reflectance spectroscopy in predicting nitrogen, phosphorus and calcium contents in heterogeneous woody plant species. Anal Bioanal Chem 382, 458–465 (2005). https://doi.org/10.1007/s00216-004-3046-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-3046-7

Keywords

Navigation