A novel dynamic approach for automatic microsampling and continuous monitoring of metal ion release from soils exploiting a dedicated flow-through microdialyser


In this paper, a novel concept is presented for automatic microsampling and continuous monitoring of metal ions in soils with minimum disturbance of the sampling site. It involves a hollow-fiber microdialyser that is implanted in the soil body as a miniaturized sensing device. The idea behind microdialysis in this application is to mimic the function of a passive sampler to predict the actual, rather than potential, mobility and bioavailability of metal traces. Although almost quantitative dialysis recoveries were obtained for lead (≥ 98%) from aqueous model solutions with sufficiently long capillaries (l ≥30 mm, 200 μm i.d.) at perfusion rates of 2.0 μL min−1, the resistance of an inert soil matrix was found to reduce metal uptake by 30%. Preliminary investigation of the potential of the microdialysis analyser for risk assessment of soil pollution, and for metal partitioning studies, were performed by implanting the dedicated probe in a laboratory-made soil column and hyphenating it with electrothermal atomic absorption spectrometry (ETAAS), so that minute, well-defined volumes of clean microdialysates were injected on-line into the graphite furnace. A noteworthy feature of the implanted microdialysis-based device is the capability to follow the kinetics of metal release under simulated natural scenarios or anthropogenic actions. An ancillary flow set-up was arranged in such a way that a continuous flow of leaching solution — mild extractant (10−2 mol L−1 CaCl2), acidic solution (10−3 mol L−1 HNO3), or chelating agent (10−4 or 10−2 mol L−1 EDTA) — was maintained through the soil body, while the concentration trends of inorganic (un-bound) metal species at the soil-liquid interface could be monitored at near real-time. Hence, relevant qualitative and quantitative information about the various mobile fractions is obtained, and metal-soil phase associations can also be elucidated. Finally, stimulus-response schemes adapted from neurochemical applications and pharmacokinetic studies are to be extended to soil research as an alternative means of local monitoring of extraction processes after induction of a chemical change in the outer boundary of the permselective dialysis membrane.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Sparks DL (1995) Environmental soil chemistry. Academic Press, San Diego

    Google Scholar 

  2. 2.

    Ure AM, Davidson CM (2002) Chemical speciation in the environment, 2nd edn. Blackwell Science, Oxford

    Google Scholar 

  3. 3.

    Filgueiras AV, Lavilla I, Bendicho C (2002) J Environ Monit 4:823–857

    Google Scholar 

  4. 4.

    Das AK, Chakraborty R, Cervera ML, de la Guardia M (1995) Talanta 42:1007–1030

    Google Scholar 

  5. 5.

    Gleyzes C, Tellier S, Astruc M (2002) Trends Anal Chem 21:451–467

    Google Scholar 

  6. 6.

    Sahuquillo A, Rigol A, Rauret G (2003) Trends Anal Chem 22:152–159

    Google Scholar 

  7. 7.

    Kennedy VH, Sanchez AL, Oughton DH, Rowland AP (1997) Analyst 122:89R–100R

    Google Scholar 

  8. 8.

    Gómez-Ariza JL, Giráldez I, Sánchez-Rodas D, Morales E (1999) Anal Chim Acta 399:295–307

    Google Scholar 

  9. 9.

    Shiowatana J, Tantidanai N, Nookabkaew S, Nacapricha D (2001) Environ Intern 26:381–387

    Google Scholar 

  10. 10.

    Sukreeyapongse O, Holm PE, Strobel BW, Panichsakpatana S, Magid J, Hansen HCB (2002) J Environ Qual 31:1901–1909

    Google Scholar 

  11. 11.

    Fedotov PS, Zavarzina AG, Spivakov BYa, Wennrich R, Mattusch J, Titze K de PC, Demin VV (2002) J Environ Monit 4:318–324

    Google Scholar 

  12. 12.

    Morales-Muñoz S, Luque-García JL, Luque de Castro MD (2004) Anal Chim Acta 515:343–348

    Google Scholar 

  13. 13.

    Beauchemin D, Kyser K, Chipley D (2002) Anal Chem 74:3924–3928

    Google Scholar 

  14. 14.

    Jimoh M, Frenzel W, Müller V, Stephanowitz H, Hoffmann E (2004) Anal Chem 76:1197–1203

    Google Scholar 

  15. 15.

    Chomchoei R, Hansen EH, Shiowatana J (2004) Anal Chim Acta 526:177–184

    Google Scholar 

  16. 16.

    Bourne JA (2003) Clin Exp Pharmacol Physiol 30:16–24

    Google Scholar 

  17. 17.

    Dittrich P, Tomaselli F, Maier A (2003) Bioforum Int 7:42–43

    Google Scholar 

  18. 18.

    Torto N, Laurell T, Gorton L, Marko-Varga G (1999) Anal Chim Acta 379:281–305

    Google Scholar 

  19. 19.

    van de Merbel NC, Lingeman H, Brinkman UATh (1996) J Chromatogr A 725:13–27

    Google Scholar 

  20. 20.

    Torto N, Mwatseteza J, Laurell T (2001) LC-GC Europe 14:536–546

    Google Scholar 

  21. 21.

    Burguera JL, Burguera M (1998) Analyst 123:561–569

    Google Scholar 

  22. 22.

    International Organization for Standardization, Soil quality (1995) Extraction of trace elements soluble in aqua regia, ISO 11466

  23. 23.

    Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  24. 24.

    Miró M, Frenzel W (2004) Anal Chem 76:5974–5981

    Google Scholar 

  25. 25.

    Rothery E (ed) (1982) Analytical methods for graphite tube atomizers, Varian Ltd., Australia

  26. 26.

    Welz B, Schlemmer G, Mudakavi JR (1992) J Anal Atom Spectrom 7:1257–1271

    Google Scholar 

  27. 27.

    Zhao Y-P, Liang X-Z, Lunte CE (1995) Anal Chim Acta 316:403–410

    Google Scholar 

  28. 28.

    Stenken JA (1999) Anal Chim Acta 379:337–357

    Google Scholar 

  29. 29.

    Miró M, Frenzel W (2004) Anal Chim Acta 512:311–317

    Google Scholar 

  30. 30.

    Torto N, Mwatseteza J, Sawula G (2002) Anal Chim Acta 456:253–261

    Google Scholar 

  31. 31.

    Martínez-Martínez MS, Gutiérrez-Hurtado B, Colino-Gandarillas CI, Martínez-Lanao J, Sánchez-Navarro J (2002) Anal Chim Acta 459:143–150

    Google Scholar 

  32. 32.

    Araujo AN, Etxebarria MB, Lima JLFC, Montenegro MCBSM, Pérez-Olmos R (1995) Fresenius J Anal Chem 351:614–617

    Google Scholar 

  33. 33.

    Pueyo M, López-Sánchez JF, Rauret G (2004) Anal Chim Acta 504:217–226

    Google Scholar 

  34. 34.

    Massart DL, Vandeginste BGM, Buydens LMC, de Jong S, Lewi PJ, Smeyers-Verbeke J (1997) Handbook of chemometrics and qualimetrics: part A. Elsevier, Amsterdam, pp 208–209

    Google Scholar 

  35. 35.

    Sauvé S W, Hendershot W, Allen HE (2000) Crit Rev Environ Sci Technol 34:1125-1131

    Google Scholar 

  36. 36.

    Hlawiczka S, Dyduch B, Fudala J (2003) Water Air Soil Pollut 142:151–163

    Google Scholar 

  37. 37.

    Rauret G, López-Sánchez JF, Sahuquillo A, Rubio R, Davison CM, Ure AM, Quevauviller Ph (1999) J Environ Monit 1:57–61

    Google Scholar 

  38. 38.

    Nowack B, Kari FG, Krüger HG (2001) Water Air Soil Pollut 125:243–257

    Google Scholar 

  39. 39.

    Pérez-Cid B, de Jesús-González M, Fernández-Gómez E (2002) Analyst 127:681–688

    Google Scholar 

  40. 40.

    Sahuquillo A, Rigol A, Rauret G (2002) J Environ Monit 4:1003–1009

    Google Scholar 

  41. 41.

    Song QJ, Greenway GM (2004) J Environ Monit 6:31–37

    Google Scholar 

Download references


Manuel Miró expresses his appreciation to “Sa Nostra, Caixa de Balears” for grant allocation. The technical assistance of Thomas Thele and Gerhard Steinbrecher is greatly acknowledged. The authors also are indebted to Dr. Wenkel from Axel Semrau GmbH & Co. for the loan of a CMA/102 microdialysis pump.

Author information



Corresponding author

Correspondence to Manuel Miró.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miró, M., Jimoh, M. & Frenzel, W. A novel dynamic approach for automatic microsampling and continuous monitoring of metal ion release from soils exploiting a dedicated flow-through microdialyser. Anal Bioanal Chem 382, 396–404 (2005). https://doi.org/10.1007/s00216-004-3003-5

Download citation


  • Microdialysis
  • Metal ions
  • Soil
  • Continuous monitoring
  • Automated sampling