Skip to main content
Log in

Study of the lipophilicity of selenium species

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work the lipophilicity of different selenium species occurring in environmental matrices and food, Se(IV), Se(VI), selenomethionine (Se-Met), selenocystamine (Se-CM), selenocystine (Se-Cyst), and dimethyl diselenide (CH3)2Se2, was investigated in the octanol–water system, using the shaking flask method and detection with inductively coupled plasma–atomic emission spectrometry (ICP–AES), in order to assess their environmental fate and tendency to bioaccumulate. Polarography was also used for the electrochemically active Se species, Se(IV), Se-Cyst, Se-CM and (CH3)2Se2, and the results were compared with those measured by ICP–AES. Furthermore, the influence of pH was studied by determining the logarithm of the distribution coefficient, log D, at three pH values, 5, 7, and 9, as was the impact of the marine environment on the lipophilicity profile of the six investigated Se species. The results were compared with those estimated approximately by use of PrologD software, based on the Ghose-Crippen log P (P: partition coefficient) calculation system, the only system which incorporates values—even though approximate—for the atom type of Se. Finally, from our experimental data an indicative value of the Se–Se fragment for log P prediction, for use in drug design, was estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Campanella L, Ferri T, Morabito RA (1989) Analusis 17:507–513

    CAS  Google Scholar 

  2. Calomme MR, Van den Branden K, Vanden Berghe DA (1995) J Appl Bacteriol 79:331–340

    CAS  Google Scholar 

  3. Whanger P (2001) J Trace Elem Exp Med 13:367–380

    Google Scholar 

  4. Mark S, Qiao YL, Dawsey S, Wu YP, Katki H, Gunter E, Fraumeni J, Blot W, Dong ZW, Taylor P (2000) J Natl Cancer I 92:1753–1763

    Article  CAS  Google Scholar 

  5. Klein E, Thompson I, Lippman S, Goodman P, Albanes D, Taylor P, Coltman C (2003) Urol Oncol 21:59–65

    Article  CAS  PubMed  Google Scholar 

  6. Fernandez-Banares F, Cabre E, Esteve M, Mingorance MD, Abad-Lacruz A, Lachica M, Gil A, Gassull MA (2002) Am J Gastroenterol 97:2103–2108

    Article  CAS  PubMed  Google Scholar 

  7. Schrauzer GN (2000) Cell Mol Life Sci 57:1864–1873

    CAS  PubMed  Google Scholar 

  8. Ganther H (1999) Carcinogenesis 20:1657–1666

    Article  CAS  PubMed  Google Scholar 

  9. Craig PJ (1986) Organometallic compounds in the environment. Longman Group Ltd., London

    Google Scholar 

  10. Gomez-Ariza JL, Sanchez-Rodas D, Morales E, Herrgott O, Marr IL (1999) Appl Organomet Chem 13:783–787

    Article  CAS  Google Scholar 

  11. Cao T, Cooney R, Woznichak M, May S, Browner R (2001) Anal Chem 73:2898–2902

    Article  CAS  PubMed  Google Scholar 

  12. Michalke B (1995) Fresenius J Anal Chem 351:670–677

    CAS  Google Scholar 

  13. Zheng J, Ohata M, Furuta N, Cosmus W (2000) J Chromatogr A 874:55–64

    Article  CAS  PubMed  Google Scholar 

  14. Chatterjee A, Tao H, Shibata Y, Morita M (2003) J Chromatogr A 997:249–257

    CAS  PubMed  Google Scholar 

  15. Zheng J, Shibata Y, Furuta N (2003) Talanta 59:27–36

    Article  CAS  Google Scholar 

  16. Van de Waterbeemd H, Testa B (1987) The parametrization of lipophilicity and other structural properties in drug design. In: Testa B (ed) Advances in drug research vol 16. Academic, New York, pp 85–227

  17. Hansch C (1981) Drug Dev Res 1:267–309

    CAS  Google Scholar 

  18. Camenisch G, Folkers G, Van de Waterbeemd H (1998) Eur J Pharm Sci 6:321–329

    Article  CAS  Google Scholar 

  19. Thomann RV (1995) Environ Health Perspect 5:53–57

    Google Scholar 

  20. Karickhoff SW, Brown DS (1979) Determination of octanol/water distribution coefficients, water solubilities and sediment/water partition coefficients for hydrophobic organic pollutants. US Environmental Protection Agency Report, EPA-600/4-79/032, Athens

  21. Geyer H, Sheehan P, Kotzias D, Freitag D, Korte F (1983) Chemosphere 13:269–284

    Article  Google Scholar 

  22. OECD, OECD (1980) Chemicals Testing Programme—OECD Expert Group on Physical Chemistry. Draft Final Report, Umweltsbundesamt (Hrsg.), Berlin

  23. OECD (1981) Guideline for testing of chemicals 107, partition coefficient (n-octanol/water)—flask shaking method OECD, Paris

  24. Pomona or MedChem log P database. Available from BioByte or Daylight CIS

  25. Mugesh G, Mont WW, Sies H (2001) Chem Rev 101:2125–2179

    Article  CAS  PubMed  Google Scholar 

  26. Andreadou I, Menge WMPB, Commandeur JNM, Worthington EA, Vermeulen NPE (1996) J Med Chem 39:2040–2046

    Article  CAS  PubMed  Google Scholar 

  27. Ochsenkühn-Petropoulou M, Tsopelas F (2002) Anal Chim Acta 467:167–178

    Article  Google Scholar 

  28. Ochsenkühn-Petropoulou M, Tsopelas F (2004) Anal Bioanal Chem, special issue for IMA’03 conference (in press)

  29. Csizmadia F, Tsantili-Kakoulidou A, Panderi I, Darvas F (1997) J Pharm Sci 86:865–871

    Article  CAS  PubMed  Google Scholar 

  30. Ghose-Cripen A, Crippen G (1988) J Comput Chem 7:565–577

    Google Scholar 

  31. Rach P, Seller H (1987) Polarography and voltammetry in trace analysis. Heidelberg

    Google Scholar 

  32. Pagliara A, Carrupt PA, Caron G, Gaillard P, Testa B (1997) Chem Rev 97:3385–3400

    Article  CAS  PubMed  Google Scholar 

  33. Tsantili-Kakoulidou A, Piperaki S, Panderi I, Csizmadia F, Darvas F (1997) Quant Struct Act Rel 16:315–316

    CAS  Google Scholar 

  34. Van de Waterbeemd H, Karajiannis H, El Tayar N (1994) Amino Acids 7:129–145

    Article  Google Scholar 

  35. Pliska V, Escher C (1996) In: Pliska V, Testa B, Van de Waterbeemd (eds) Lipophilicity in drug action and toxicology, vol 4. VCH, Weinheim, pp 375–400

  36. Rekker RF, Mannhold R (1992) Calculation of drug lipophilicity. VCH, Weinheim

    Google Scholar 

  37. Leo A (1993) Chem Rev 93:1281–1306

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work given by the “Alexandros S. Onasis” foundation, as a scholarship for the Ph.D. thesis of Mr F. Tsopelas, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Th. Ochsenkühn-Petropoulou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsopelas, F.N., Ochsenkühn-Petropoulou, M.T., Tsantili-Kakoulidou, A. et al. Study of the lipophilicity of selenium species. Anal Bioanal Chem 381, 420–426 (2005). https://doi.org/10.1007/s00216-004-2822-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2822-8

Keywords