Skip to main content
Log in

Study of the disulfide reduction of denatured proteins by liquid chromatography coupled with on-line cold-vapor-generation atomic-fluorescence spectrometry (LC–CVGAFS)

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Hydrophobic-interaction chromatography coupled on-line with chemical-vapor-generation atomic-fluorescence spectrometry (HIC–CVGAFS), optimized recently for the analysis of thiol-containing proteins under denaturing conditions, has been used to study the chemical reduction of denatured proteins. Four proteins chosen as models (human serum albumin (HSA), bovine serum albumin (BSA), α-lactalbumin (α-Lac) from bovine milk, and lysozyme from chicken egg (Lys)) were denatured with urea and reduced with dithiothreitol (DTT), with selenol as catalyst. The method is based on derivatization of the –SH groups of proteins with p-hydroxymercurybenzoate (PHMB), followed by HIC separation and post-column on-line reaction of the derivatized reduced, denatured proteins with bromine generated in situ. HgII, derived from rapid conversion of uncomplexed and protein-complexed PHMB, is selectively detected by AFS in an Ar/H2 miniaturized flame after sodium borohydride (NaBH4) reduction to Hg°. The yield of the reduction was studied as a function of reductant concentration, reduction time (tred), and urea concentration. Results showed that the optimum values for DTT and selenol concentrations and for tred were between 1 and 100 mmol L−1 and between 1 and 20 min, respectively, depending on the protein studied. The percentage disulfide bond reduction increases as the urea concentration used for protein denaturation increases, giving a single-step sigmoid increment for single-domain, low-MW proteins (α-Lac and Lys), and a two-step sigmoid increment for multi-domain, high MW proteins (HSA and BSA). The shapes of plots of percentage reduced disulfide against urea concentration are characteristic of each protein and are correlated with the location of S–S in the protein. Under the adopted conditions complete protein denaturation is the conditio sine qua non for obtaining 100% S–S reduction. The detection limit for denatured, reduced proteins examined under the optimized conditions was found to be in the range 1–5×10−12 mol L−1 (10–30 pg), depending on the protein considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wedemeyer WJ, Welker E, Narayan M, Scheraga HA (2000) Biochemistry 39:4207–4216

    Article  CAS  PubMed  Google Scholar 

  2. Creighton TE (1986) Methods Enzymol 131:83–106

    Article  CAS  PubMed  Google Scholar 

  3. Gekko K, Kimoto A, Kamiyama T (2003) Biochemistry 42:13746–13753

    Article  CAS  PubMed  Google Scholar 

  4. Edwin F, Jagannadham MV (2000) Biochim Biophys Acta 1479:69–82

    Article  CAS  PubMed  Google Scholar 

  5. Tachibana H, Ohta K, Sawano H, Koumoto Y, Segawa S (1994) Biochemistry 33:15008–15016

    Google Scholar 

  6. Chang Y, Schindler P, Chatrenet B (1995) J Biol Chem 270:11992–11997

    Article  CAS  PubMed  Google Scholar 

  7. Darby JNJ, Morin PE, Talbo G, Creighton TE (1995) J Mol Biol 249:463–477

    Article  CAS  PubMed  Google Scholar 

  8. Takeda K, Ogawa K, Ohara M, Hamada S, Moriyama Y (1995) J Protein Chem 14:679–684

    CAS  PubMed  Google Scholar 

  9. Haniu M, Hui J, Young Y, Le J, Katta V, Lee R, Shimamoto G, Rohde MF (1996) Biochemistry 35:16799–16805

    Article  CAS  PubMed  Google Scholar 

  10. Onda M, Tatsumi E, Takahashi N, Hirose M (1997) J Biochem 122:83–89

    CAS  PubMed  Google Scholar 

  11. Xu X, Scheraga HA (1998) Biochemistry 37:7561–7571

    Article  CAS  PubMed  Google Scholar 

  12. Hober S, Uhlen M, Nilsson B (1997) Biochemistry 36:4616–4622

    Article  CAS  PubMed  Google Scholar 

  13. Kumar N, Kella D, Kinsella JE (1985) J Biochem Biophys Met 11:251–263

    Article  CAS  Google Scholar 

  14. Cayot P, Rosiers H, Roullier L, Haertlé T, Tainturier G (2002) Food Chem 77:309–315

    Article  CAS  Google Scholar 

  15. Kuwajima K, Ikeguchi M, Sugawara T, Hiraoka Y, Sugai S (1990) Biochemistry 29:8240–8249

    CAS  PubMed  Google Scholar 

  16. Cayot P, Lorient D (1997) Structure–function relationships of whey proteins (Chap 8). In: Damodaran S, Paraf A (eds) Food proteins and their applications, pp 225–256

  17. Wolf WJ (1993) J Agric Food Chem 41:168–176

    CAS  Google Scholar 

  18. Mangino ME, Harper WJ (1996) Factors affecting application of native and modified proteins in food product. In: Magdassi S (ed) Surface activity of proteins: chemical and physicochemical modifications. Marcel Dekker, New York, pp 285–322

    Google Scholar 

  19. Honeychurch MJ (1997) Bioelectrochem Bioeng 44:13–21

    Article  CAS  Google Scholar 

  20. Raspi G, Lo Moro A, Spinetti M, Tesi G (1997) Anal Commun 34:307–309

    Article  CAS  Google Scholar 

  21. Means GE, Feeney RE (1971) Chemical modification of proteins. Holden Day, San Francisco

    Google Scholar 

  22. Fontana A, Toniolo C (1974) Detection and determination of thiols. In: Patai S (ed) The chemistry of the thiol group, Wiley, New York, pp 272–319

    Google Scholar 

  23. Jocelyn P (1987) Methods Enzymol 143:246–256

    Article  CAS  PubMed  Google Scholar 

  24. DeCollo TV, Lees WJ (2001) J Org Chem 66:4244–4249

    Article  CAS  PubMed  Google Scholar 

  25. Ivanov AR, Nazimov IV, Baratova LA (2000) J Chromatogr A 870:433–442

    Article  CAS  PubMed  Google Scholar 

  26. Burmeister Getz E, Xiao M, Chakrabarty T, Cooke R, Selvin PR (1999) Anal Biochem 273:73–80

    Article  PubMed  Google Scholar 

  27. Singh R, Whitesides GM (1991) J Org Chem 56:2332–2337

    CAS  Google Scholar 

  28. Singh R, Whitesides GM (1991) J Org Chem 56:6931–6933

    CAS  Google Scholar 

  29. Singh R, Kats L (1995) Anal Biochem 232:86–91

    Article  CAS  PubMed  Google Scholar 

  30. Bramanti E, Lucchesini S, D’Ulivo A, Lampugnani L, Zamboni R, Spinetti M, Raspi G (2001) J Anal Atom Spectrom 16:166–171

    Article  CAS  Google Scholar 

  31. Bramanti E, Lomonte C, Onor M, Zamboni R, Raspi G, D’Ulivo A (2004) Talanta 63:383–389

    Article  CAS  Google Scholar 

  32. Ando Y, Steiner M (1973) Biochim Biophys Acta 311:38–44

    Article  CAS  PubMed  Google Scholar 

  33. Pace CN, Shirley BA, Thompson JA (1989) Protein structure: a practical approach, Creighton TE (ed) IRL Press, Oxford, pp 311–330

    Google Scholar 

  34. Wallevik K (1973) J Biol Chem 245:2650–2655

    Google Scholar 

  35. Razumovsky L, Damodaran S (1999) Langmuir 15:1392–1399

    Article  CAS  Google Scholar 

  36. D’Ulivo A, Bramanti E, Lampugnani L, Zamboni R (2001) Spectrochim Acta B 56:1893–1907

    Article  Google Scholar 

  37. Malmsten M (1998) J Colloid Interface Sci 207:186–199

    Article  CAS  PubMed  Google Scholar 

  38. Gu Z, Su Z, Janson J-C (2001) J Chromatogr A 918:311–318

    Article  CAS  PubMed  Google Scholar 

  39. Creigthon TE (1993) Proteins structures and molecular properties. Freeman VH and Company, New York

    Google Scholar 

  40. Khan MY (1986) Biochem J 236:307–310

    CAS  PubMed  Google Scholar 

  41. Peters T Jr (1985) Adv Protein Chem 37:161–247

    CAS  PubMed  Google Scholar 

  42. Ahmad N, Qasim MA (1995) Eur J Biochem 227:563–565

    CAS  PubMed  Google Scholar 

  43. Sugai S, Ikeguchi M (1994) Adv Biophys 30:37–84

    Article  CAS  PubMed  Google Scholar 

  44. Pardon E, Haezebrouck P, De Baetselier A, Hooke SD, Fancourt KT, Desmet J, Dobson CM, Van Dael H, Joniau M (1995) J Biol Chem 270:10514–10524

    Article  CAS  PubMed  Google Scholar 

  45. Chang JY, Li L (2002) FEBS Letters 511:73–78

    Article  CAS  PubMed  Google Scholar 

  46. Gilbert HF (1994) Mechanism of protein folding. In: Pain RH (ed), Oxford University Press, Cambridge

    Google Scholar 

  47. Farruggia B, Picò GA (1999) Int J Biol Macromol 26:317–323

    Article  CAS  PubMed  Google Scholar 

  48. Ahmad F, Bigelow CC (1982) J Biol Chem 257:12935–12938

    CAS  PubMed  Google Scholar 

  49. Green RF, Pace CN (1974) J Biol Chem 249:5388–5393

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by CNR and Ambiente s.c.r.L. (Carrara, MS, Italy; DOCUP 2000–2006, Regione Toscana). The authors would like to thank ThermoQuest, for providing part of the instrumentation, and Mrs M. Cempini, C. Lanza and M.C.M. Mascherpa for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Bramanti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bramanti, E., Lomonte, C., Onor, M. et al. Study of the disulfide reduction of denatured proteins by liquid chromatography coupled with on-line cold-vapor-generation atomic-fluorescence spectrometry (LC–CVGAFS). Anal Bioanal Chem 380, 310–318 (2004). https://doi.org/10.1007/s00216-004-2746-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2746-3

Keywords

Navigation