Skip to main content

Advertisement

Log in

Standard addition method applied to solid-state stripping voltammetry: determination of zirconium in minerals and ceramic materials

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An application of the standard addition method to stripping voltammetry of solid materials immobilized in inert electrodes is described. The method allows the determination of the mass fraction of a depositable metal M in a material on addition of known amounts of a standard material containing M to a mixture of that material and a reference compound of a second depositable metal, R. After a reductive deposition step, voltammograms recorded for those modified electrodes immersed in a suitable electrolyte produce stripping peaks for the oxidation of the deposits of M and R. If no intermetallic effects appear the quotients between the peak areas and the peak currents for the stripping oxidation of M and R vary linearly with the mass ratio of the added standard and the reference compound, thus providing an electrochemical method for determining the amount of M in the sample. The method has been applied to the determination of Zr in minerals, ceramic frits, and pigments, using ZnO as reference material and ZrO2 as the standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Scholz F, Meyer B (1994) Chem Soc Rev 23:341

    Article  CAS  Google Scholar 

  2. Scholz F, Lange B (1992) Trends Anal Chem 11:359

    Article  CAS  Google Scholar 

  3. Scholz F, Meyer B (1998) In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry, a series of advances, vol 20. Marcel Dekker, New York pp 1–87.

  4. Grygar T, Marken F, Schröder U, Scholz F (2002) Collect Czech Chem Commun 67:163

    Article  CAS  Google Scholar 

  5. Lamache M, Bauer D (1979) Anal Chem 51:1320

    CAS  Google Scholar 

  6. Brainina KhZ, Vidrevich MB (1981) J Electroanal Chem 121:1

    Article  CAS  Google Scholar 

  7. Scholz F, Nitschke L, Henrion G (1989) Naturwiss 76:71

    CAS  Google Scholar 

  8. Scholz F, Nitschke L, Henrion G, Damaschun F (1991) Naturwissenschaften 76:167

    Google Scholar 

  9. Doménech A Anal Chim Acta, (in press)

  10. Wang J (1985) Stripping analysis, principles, instrumentation and applications. Wiley-VCH, Weinheim

    Google Scholar 

  11. Clark RJH, Bradley DC, Thornton P (1975) The chemistry of titanium, zirconium and hafnium. Pergamon Press, Oxford

    Google Scholar 

  12. Bückel KH, Moretto HH, Woditsch P (2000) Industrial inorganic chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  13. Alarcón J (2000) J Eur Ceram Soc 20:1749

    Article  Google Scholar 

  14. Llusar M, Calbo J, Badenes JA, Tena MA, Monrós G (2001) J Mater Sci 36:153

    Article  CAS  Google Scholar 

  15. Badenes JA, Vicent JB, Llusar M, Tena MA, Monrós G (2002) J Mater Sci 37:1413

    Article  CAS  Google Scholar 

  16. Taylor L (2001) Ind Miner 409:73

    Google Scholar 

  17. Romero M, Rincón JM, Acosta A (2003) J Eur Ceram Soc 23:1629

    Article  CAS  Google Scholar 

  18. Castillone RJ, Sriram D, Carty WM, Snyder RL (1999) J Am Ceram Soc 24:2819

    Google Scholar 

  19. Bach H, Krause D (1999) Analysis of the composition and structure of glass and glass ceramics. Springer, Berlin Heidelberg New York

    Google Scholar 

  20. Lachance GR, Claisse F (1995) Quantitative X-ray fluorescence analysis, theory and application. Wiley, Chichester

    Google Scholar 

  21. Medicus G, Ackermann G (1991) Fresenius J Anal Chem 339:226

    CAS  Google Scholar 

  22. Buhrke VE, Jenkins R, Smith S (eds) (1998) Preparation of specimens for X-ray fluorescence and X-ray diffraction analysis. Wiley-VCH, New York

    Google Scholar 

  23. Bosch-Reig F, Gimeno-Adelantado JV, Sánchez-Ramos S, Yusá-Marco DJ, Bosch-Mossí F (2001) Spectrochim Acta B 56:187

    Article  Google Scholar 

  24. Bosch-Reig F, Gimeno-Adelantado JV, Peris-Martínez V, Bosch-Mossí F (1995) Spectrochim Acta B 50:739

    Article  Google Scholar 

  25. Bosch-Reig F, Gimeno-Adelantado JV, Peris-Martínez V, Yusá-Marco DJ, Bosch-Mossí F, Doménech-Carbó MT (1996) Spectrochim Acta B 51:569

    Article  Google Scholar 

  26. Raith A, Godfrey J, Hutton RC (1995) Fresenius J Anal Chem 354:163

    Google Scholar 

  27. Yang XJ, Pin C (2002) Anal Chim Acta 458:375

    Article  CAS  Google Scholar 

  28. Becker JS, Dietze HJ (2003) Int J Mass Spectrom 228:127

    Article  CAS  Google Scholar 

  29. Tsolakidou A, Buxeda i Garrigós J, Kilikoglou V (2002) Anal Chim Acta 474:17

    Article  Google Scholar 

  30. Becker JS (2002) Spectrochim Acta B 57:1805

    Article  Google Scholar 

  31. de Vries WT, Van Dalen E (1967) J Electroanal Chem 14:315

    Article  Google Scholar 

  32. Lovric M, Komorsky-Lovric S, Bond AM (1991) J Electroanal Chem 319:1

    Article  CAS  Google Scholar 

  33. Lovric M, Komorsky-Lovric S (1988) J Electroanal Chem 248:239

    Article  CAS  Google Scholar 

  34. Lovric M, Komorsky-Lovric S (1989) Fresenius J Anal Chem 334:289

    Google Scholar 

  35. Komorsky-Lovric S, Lovric M, Bond AM (1992) Anal Chim Acta 258:299

    Article  CAS  Google Scholar 

  36. Doménech A, Doménech MT, Osete L, Gimeno JV, Bosch F, Mateo R (2002) Talanta 56:161

    Article  Google Scholar 

  37. Doménech-Carbó A, Sánchez-Ramos S, Doménech-Carbó MT, Gimeno-Adelantado JV, Bosch-Reig F, Yusá-Marco DJ, Saurí-Peris MC (2003) Electroanalysis 15:1465

    Article  Google Scholar 

  38. O’Dea JJ, Osteryoung J, Osteryoung RA (1983) J Phys Chem 87:3911

    CAS  Google Scholar 

  39. Dong S, Wang Y (1988) Talanta 35:819

    Article  CAS  Google Scholar 

  40. Naumann RS (1992) Fresenius J Anal Chem 343:746

    CAS  Google Scholar 

Download references

Acknowledgements

The Valencian Regional Government “I+D Generalitat Valenciana” Project CTIDIB/2002/216 is thanked for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Doménech-Carbó.

Appendix

Appendix

Analysis of errors

To evaluate the relative uncertainty associated with the mass fraction of M in the sample, ɛMA, we shall use the conventional theory of error propagation. Because the uncertainty of rMS, rRX, MM, and MR is negligible, ɛMA depends on the uncertainties of mMA, mMS, mRX, and those associated with peak current or peak area measurements.

Taking the first, the relative uncertainty in peak current (or peak area) measurements can be expressed as:

$$ \varepsilon _q = \Delta q\left( {\frac{1} {{q_{{\text{Zr}}} }} + \frac{1} {{q_{{\text{Zn}}} }}} \right) $$
(13)

where it is assumed that an identical uncertainty Δq(= Δq(M)=Δq(R)) is obtained for the peak areas or peak currents of both stripping processes. Assuming that an identical total charge q(=q(M)+q(R)) passes in the electrochemical experiments, one can obtain:

$$ q_{\text{M}} = \frac{{H\left( {\Gamma _{\text{M}} /\Gamma _{\text{R}} } \right)}} {{1 + H\left( {\Gamma _{\text{M}} + \Gamma _{\text{R}} } \right)}} $$
(14)
$$ q_{\text{R}} = \frac{q} {{1 + H\left( {\Gamma _{\text{M}} + \Gamma _{\text{R}} } \right)}} $$
(15)

where H (=HR/HM) represents the coefficient of response associated with the electrochemical measurements. Combining these equations, the relative uncertainty associated to the quantity q(M)/q(R) (or Δip(M)/Δip(R)) is:

$$ \varepsilon _{\text{q}} = \frac{{\Delta \left( {q_{\text{M}} /q_{\text{R}} } \right)}} {{q_{\text{M}} /q_{\text{R}} }} = \frac{{\Delta q\left[ {1 + H\left( {\Gamma _{{\text{Zr}}} /\Gamma _{{\text{Zn}}} } \right)} \right]^2 }} {{qH\left( {\Gamma _{{\text{Ze}}} /\Gamma _{{\text{Zn}}} } \right)}} $$
(16)

The values of ɛ q depend on the values of H and the quotient ΓM/ΓR in an identical way. The position of the minimum of uncertainty depends on the value of these parameters. Because H (=HR/HM) increases on decreasing the ΓM/ΓR ratio, a compromise between both parameters must be found. Thus, for ΓM/ΓR=1, the minimum of ɛ q is obtained for H=1.

For the second, one can take a typical uncertainty Δm (=ΔmMAmMBmRX) equal to 0.01 mg. Then, the relative uncertainties of the quotients mMA/mRX and mMS/mRX are:

$$ \begin{aligned} \frac{{\Delta \left( {m_{{\text{MA}}} /m_{{\text{RX}}} } \right)}} {{m_{{\text{MA}}} /m_{{\text{RX}}} }} & = \Delta m\left( {\frac{1} {{m_{{\text{MA}}} }} - \frac{1} {{m_{{\text{RX}}} }}} \right) \\ \frac{{\Delta \left( {m_{{\text{MS}}} /m_{{\text{RX}}} } \right)}} {{m_{{\text{MS}}} /m_{{\text{RX}}} }} & = \Delta m\left( {\frac{1} {{m_{{\text{MS}}} }} - \frac{1} {{m_{{\text{RX}}} }}} \right) \\ \end{aligned} $$

For fixed values of Δm and the sum of the masses, numerical calculations indicate that the value of such terms is minimal for mMA/mRX and mMS/mRX equal to unity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doménech-Carbó, A., Moya-Moreno, M. & Doménech-Carbó, M.T. Standard addition method applied to solid-state stripping voltammetry: determination of zirconium in minerals and ceramic materials. Anal Bioanal Chem 380, 146–156 (2004). https://doi.org/10.1007/s00216-004-2720-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2720-0

Keywords

Navigation