Skip to main content
Log in

Direct determination of copper in urine using a sol–gel optical sensor coupled to a multicommutated flow system

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, a multicommutated flow system incorporating a sol–gel optical sensor is proposed for direct spectrophotometric determination of Cu(II) in urine. The optical sensor was developed by physical entrapment of 4-(2-pyridylazo)resorcinol (PAR) in sol–gel thin films by means of a base-catalysed process. The immobilised PAR formed a red 2:1 complex with Cu(II) with maximum absorbance at 500 nm. Optical transduction was based on a dual-colour light-emitting diode (LED) (green/red) light source and a photodiode detector. The sensor had optimum response and good selectivity towards Cu(II) at pH 7.0 and its regeneration was accomplished with picolinic acid. Linear response was obtained for Cu(II) concentrations between 5.0 and 80.0 μg L−1, with a detection limit of 3.0 μg L−1 and sampling frequency of 14 samples h−1. Interference from foreign ions was studied at a 10:1 (w/w) ion:Cu(II) ratio. Results obtained from analysis of urine samples were in very good agreement with those obtained by inductively coupled plasma mass spectrometry (ICP–MS); there was no significant differences at a confidence level of 95%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Harris ED (2003) Crit Rev Clin Lab Sci 40:547–586

    CAS  PubMed  Google Scholar 

  2. Alcock NW (1996) Trace elements. In: Kaplan LA, Pesce AJ (eds) Clinical chemistry—theory, analysis and correlation, 3rd edn. Mosby, St. Louis

    Google Scholar 

  3. Halls DJ, Fell GS, Dunbar PM (1981) Clin Chim Acta 114:21–27

    Article  CAS  PubMed  Google Scholar 

  4. Dube P (1988) At Spectrosc 9:55–58

    CAS  Google Scholar 

  5. Lin TW, Huang SD (2001) Anal Chem 73:4319–4325

    Article  CAS  PubMed  Google Scholar 

  6. Lelis KLA, Magalhães CG, Rocha CA, Silva JBB (2002) Anal Bioanal Chem 374:1301–1305

    Article  CAS  PubMed  Google Scholar 

  7. Dawson JB, Ellis DJ, Newton-John H (1968) Clin Chim Acta 21:33–42

    Article  CAS  PubMed  Google Scholar 

  8. Spector H, Glusman S, Jatlow P, Seligson D (1971) Clin Chim Acta 31:5–11

    Article  CAS  PubMed  Google Scholar 

  9. Almeida AA, Jun X, Lima JLFC (2000) At Spectrosc 21:187–193

    CAS  Google Scholar 

  10. Szpunar J, Bettmer J, Robert M, Chassaigne H, Cammann K, Lobinski R, Donard OFX (1997) Talanta 44:1389–1396

    Article  CAS  Google Scholar 

  11. Townsend AT, Miller KA, McLean S, Aldous S (1998) J Anal Atomic Spectr 13:1213–1219

    Article  CAS  Google Scholar 

  12. Wang J, Hansen EH, Gammelgaard B (2001) Talanta 55:117–126

    Article  CAS  Google Scholar 

  13. Wilson JF, Klassen WH (1966) Clin Chim Acta 13:766–774

    Article  CAS  PubMed  Google Scholar 

  14. Bauer JD (1982) Clinical laboratory methods. Mosby, St. Louis

    Google Scholar 

  15. Morales A, Valladares L (1989) Fresenius Z Anal Chem 55:53–55

    CAS  PubMed  Google Scholar 

  16. Oehme I, Prattes S, Wolfbeis OS, Mohr GJ (1998) Talanta 47:595–604

    Article  CAS  Google Scholar 

  17. Sanchez-Pedreno C, Ortuno JA, Albero MI, Garcia MS, de las Bayonas JCG (2000) Fresenius J Anal Chem 366:811–815

    Article  CAS  PubMed  Google Scholar 

  18. Coo L, Belmonte CJ (2002) Talanta 58:1063–1069

    Article  CAS  Google Scholar 

  19. Colsa Herrera JM, Sanchez Rojas F, Bosch Ojeda C, García de Torres A, Cano Pavón JM (2000) Lab Robot Autom 12:241–245

    Article  Google Scholar 

  20. Sands TJ, Cardwell TJ, Cattrall RW, Farrell JR, Iles PJ, Kolev SD (2002) Sens Actuators B 85:33–41

    Article  Google Scholar 

  21. Mayr T, Klimant I, Wolfbeis OS, Werner T (2002) Anal Chim Acta 462:1–10

    Article  CAS  Google Scholar 

  22. Steinberg IM, Lobnik A, Wolfbeis OS (2003) Sens Actuators B 90:230–235

    Article  Google Scholar 

  23. Mahendra N, Gangaiya P, Sotheeswaran S, Narayanaswamy R (2003) Sens Actuators B 90:118–123

    Article  Google Scholar 

  24. Sandell EB, Onishi H (1978) Photometric determination of traces of metals: general aspects, 4th edn. Interscience, New York

    Google Scholar 

  25. Geary WJ, Nickless G, Pollard FH (1962) Anal Chim Acta 27:71–79

    Article  CAS  Google Scholar 

  26. Cordova MLF, Diaz AM, Reguera MIP, Vallvey LFC (1994) Fresenius J Anal Chem 349:722–727

    Google Scholar 

  27. Malçik M, Çaglar P, Narayanaswamy R (2000) Quimica Anal 19(Suppl 1):94–98

    Google Scholar 

  28. Araújo AN, Costa RCC, Alonso-Chamarro J (1999) Talanta 50:337–343

    Article  Google Scholar 

  29. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol–gel processing. Academic, New York

    Google Scholar 

  30. Hench LL, West JK (1990) Chem Rev 90:33–72

    CAS  Google Scholar 

  31. MacCraith BD, McDonagh CM, O’Keeffe G, McEvoy AK, Butler T, Sheridan FR (1995) Sens Actuators B 29:51–57

    Article  Google Scholar 

  32. Lin J, Brown CW (1997) Trends Anal Chem 16:200–211

    Article  CAS  Google Scholar 

  33. Perrin DD, Dempsey B (1979) Buffers for pH and metal ion control. Chapman and Hall, London

    Google Scholar 

  34. Badini GE, Grattan KTV, Tseung ACC (1995) Analyst 120:1025–1028

    Article  CAS  Google Scholar 

  35. Wei H, Collinson MM (1999) Anal Chim Acta 397:113–121

    Article  CAS  Google Scholar 

  36. Nivens DA, Zhang Y, Michael-Angel S (1998) Anal Chim Acta 376:235–245

    Article  CAS  Google Scholar 

  37. Geary WJ, Nickless G, Pollard FH (1962) Anal Chim Acta 26:575–582

    Article  CAS  Google Scholar 

  38. Klotz M, Ayral A, Guizard C, Cot L (1999) Bull Korean Chem Soc 20:879–884

    CAS  Google Scholar 

  39. Zagatto EAG, Arruda MAS, Jacintho AO, Mattos IL (1990) Anal Chim Acta 234:153–160

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Paula C.A. Jerónimo thanks FCT and FSE (III QCA) for financial support (Ph.D. Grant SFRH/BD/2876/2000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto N. Araújo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jerónimo, P.C.A., Araújo, A.N., Montenegro, M.C.B.S.M. et al. Direct determination of copper in urine using a sol–gel optical sensor coupled to a multicommutated flow system. Anal Bioanal Chem 380, 108–114 (2004). https://doi.org/10.1007/s00216-004-2718-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2718-7

Keywords

Navigation