Skip to main content
Log in

Selective extraction of U(VI), Th(IV), and La(III) from acidic matrix solutions and environmental samples using chemically modified Amberlite XAD-16 resin

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new grafted polymer has been developed by the chemical modification of Amberlite XAD-16 (AXAD-16) polymeric matrix with [(2-dihydroxyarsinoylphenylamino)methyl]phosphonic acid (AXAD-16-AsP). The modified polymer was characterized by a combination of 13C CPMAS and 31P solid-state NMR, Fourier transform-NIR-FIR-Raman spectroscopy, CHNPS elemental analysis, and thermogravimetric analysis (TGA). The distribution studies for the extraction of U(VI), Th(IV), and La(III) from acidic solutions were performed using an AXAD-16-AsP-packed chromatographic column. The influences of various physiochemical parameters on analyte recovery were optimized by both static and dynamic methods. Accordingly, even under high acidities (>4 M), good distribution ratio (D) values (102–104) were achieved for all the analytes. Metal ion desorption was effective using 1 mol L−1 (NH4)2CO3. From kinetic studies, a time duration of <15 min was sufficient for complete metal ion saturation of the resin phase. The maximum metal sorption capacities were found to be 0.25, 0.13, and 1.49 mmol g−1 for U(VI); 0.47, 0.39, and 1.40 mmol g−1 for Th(IV); and 1.44, 1.48, and 1.12 mmol g−1 for La(III), in the presence of 2 mol L−1 HNO3, 2 mol L−1 HCl, and under pH conditions, respectively. The analyte selectivity of the grafted polymer was tested in terms of interfering species tolerance studies. The system showed an enrichment factor of 365, 300, and 270 for U(VI), Th(IV), and La(III), and the limit of analyte detection was in the range of 18–23 ng mL−1. The practical applicability of the polymer was tested with synthetic nuclear spent fuel and seawater mixtures, natural water, and geological samples. The RSD of the total analytical procedure was within 4.9%, thus confirming the reliability of the developed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Geckeler EK (2001) Advanced functional molecules and polymers, 1st edn. Gordon and Breach, Singapore

  2. Kantipuly C, Katrogadda S, Chow A, Gesser HD (1990) Talanta 37:491–517

    Article  CAS  Google Scholar 

  3. Torre M, Marina ML (1994) CRC Crit Rev Anal Chem 24:327–361

    CAS  Google Scholar 

  4. Prabhakaran D, Subramanian MS (2003) Talanta 59:1227–1236

    Article  CAS  Google Scholar 

  5. Condamines N, Musikas C (1992) Solvent Extr Ion Exch 10:69–100

    CAS  Google Scholar 

  6. Cuillerdier C, Musikas C (1995) Sep Sci Tech 30:2075–2099

    Google Scholar 

  7. Hennion MC (1999) J Chromatogr A 856:3–54

    CAS  PubMed  Google Scholar 

  8. Kantipuly JC, Westland DA (1988) Talanta 35:1–13

    Article  CAS  Google Scholar 

  9. Savvin SB, Mikhailova AV (1996) J Anal Chem 51(1):42–49.

    CAS  Google Scholar 

  10. Myasoedova GV, Savvin SB (1987) CRC Crit Rev Anal Chem 17:1–63.

    Google Scholar 

  11. Fritz JS (1999) Analytical solid phase extraction, 1st edn. Wiley-VCH, New York

  12. Rao PRV, Patil SK (1978) J Radioanal Chem 42:399–410

    CAS  Google Scholar 

  13. Snell FD (1978) Photometric and fluorometric methods of analysis metals. Wiley, New York

  14. Oscar AN, Bernard WW, Michael A (1958) Anal Chem 30:1182–1185

    Google Scholar 

  15. Maji S, Sundarajan K, Hemamalini G, Viswanathan KS (2001) Fluorimetric estimation of uranium: applications in nuclear technology, IGC 228. Indra Gandhi Centre for Atomic Research, India

    Google Scholar 

  16. Whitefield H, Jagnee D (1956) Marine electrochemistry: a practical introduction. Wiley-Interscience, Northern Ireland

    Google Scholar 

  17. Komoroski RA (1986) High resolution NMR spectroscopy of synthetic polymers in bulk, 1st edn. VCH, Deerfield Beach, Florida

  18. Verkade JG, Quin LD (1987) Phosphorous-31 NMR spectroscopy in stereochemical analysis, 1st edn. VCH, Deerfield Beach, Florida

  19. Prabhakaran D, Subramanian MS (2003) Anal Lett 36:2277–2289

    Article  CAS  Google Scholar 

  20. Jain VK, Handa A, Sait SS, Shrivastav P, Agrawal YK (2001) Anal Chim Acta 429:237–246

    Article  Google Scholar 

  21. Merdivan M, Zahir Duz M, Hamamci C (2001) Talanta 55:639–645

    Article  CAS  Google Scholar 

  22. Pathak R, Rao GN (2000) Anal Chim Acta 335:283–290

    Article  Google Scholar 

  23. Pakalns P (1980) Anal Chim Acta 120:289–296

    Article  CAS  Google Scholar 

  24. Ueda K, Sato Y, Yoshimura O, Yamamoto Y (1988) Analyst 113:773–777

    Article  CAS  Google Scholar 

  25. Prabhakaran D, Subramanian MS (2003) Talanta 61:423–430

    Article  CAS  Google Scholar 

  26. Prabhakaran D, Subramanian MS (2003) React Funct Polym 57:147–155

    Article  CAS  Google Scholar 

  27. Dev K, Pathak R, Rao GN (1999) Talanta 48:579–584

    CAS  Google Scholar 

  28. Kumar M, Rathore DPS, Singh AK (2000) Analyst 125:1221–1226

    CAS  Google Scholar 

  29. Prabhakaran D, Subramanian MS (2004) Sep Sci Tech 39:941–957

    Google Scholar 

  30. Maheswari AM, Subramanian MS (2003) Anal Lett 36:2875–2892

    Article  Google Scholar 

  31. Chiarizia R, Horwitz EP, Alexandratos SD (1993) Solvent Extr Ion Exch 11:211–237

    Google Scholar 

  32. Horwitz EP, Chiarizia R, Diamond H, Gatrone RC, Alexandratos SD, Trochimczuk AQ, Crick DW (1993) Solvent Extr Ion Exch 11:943–966

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Subramanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabhakaran, D., Subramanian, M.S. Selective extraction of U(VI), Th(IV), and La(III) from acidic matrix solutions and environmental samples using chemically modified Amberlite XAD-16 resin. Anal Bioanal Chem 379, 519–525 (2004). https://doi.org/10.1007/s00216-004-2600-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2600-7

Keywords

Navigation