Skip to main content

Assessment of total effective xenoestrogen burden in adipose tissue and identification of chemicals responsible for the combined estrogenic effect

Abstract

Test systems to screen for estrogenicity and appropriate biomarkers of human exposure are required for epidemiological studies of endocrine disruption. We addressed these issues by developing and standardising a method to assess the total estrogenic xenobiotic burden in human adipose tissue. In this study, which is the continuation of a previous work, we have improved the protocol for extensive fractionation of a higher number of tissue samples in order to investigate bioaccumulated xenoestrogens that are candidates for estrogenicity and to assess their combined estrogenic effect. This was achieved by extensive HPLC separation of xenoestrogens from endogenous hormones followed by testing of individual fractions in the E-Screen test for estrogenicity. Organochlorine pesticides, PCBs and halogenated bisphenols and alkylphenols were collected in the most lipophilic fractions, followed by progestins, androgens and estradiol esters, and then by steroidal estrogens; phyto- and myco-estrogens were collected around the end of the run. These results were confirmed by exhaustive chemical analysis. In 458 human adipose tissue samples, the total effective xenoestrogen burden was positive in 75% of samples in the pooled fraction that contained organohalogenated xenoestrogens (mean 515.3 pM Eeq/g lipid; range 0–14.5 nM) and in 82% of samples in the pooled fraction where natural estrogens eluted (mean 696.6 pM Eeq/g lipid; range 0–12.9 nM). Organochlorine pesticides emerged as candidate chemicals for the estrogenicity of the first pooled fraction, because DDT and derivatives were present in 98.3% of the samples. However, no correlation was found between the concentration of any single chemical and the estrogenicity determined in the bioassay. There may be several reasons for this lack of concordance: (i) the estrogenic effects depicted in the E-Screen bioassay are a consequence of the combined effect of several organohalogens or (ii) the proliferative effect is due to other chemicals not measured. Because additive, synergistic or antagonistic mechanisms may account for the final effect observed in the pooled fractions, the approach proposed in this work is more appropriate for exposure assessment in epidemiological studies than the determination of individual chemicals in human samples.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Birnbaum LS, Fenton SE (2003) Environ Health Perspect 111:389–394

    CAS  PubMed  Google Scholar 

  2. 2.

    Damstra T, Barlow S, Bergman A, Kavlock R, Van der Kraak G. (2002) (eds) Global assessment of the state-of-the-science of endocrine disruptors. WHO, Geneva

  3. 3.

    Herbs AL, Ulfelder H, Poskanzer DC (1971) N Engl J Med 284:878–881

    CAS  PubMed  Google Scholar 

  4. 4.

    Colborn T, vom Saal FS, Soto AM (1993) Environ Health Perspect 101:378–384

    PubMed  Google Scholar 

  5. 5.

    Snedeker, SM (2001) Environ Health Perspect 109:35–47

    CAS  Google Scholar 

  6. 6.

    Sonnenschein C, Soto AM (1998) J Steroid Biochem Mol Biol 65:143–150

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Rasmussen TH, Nielsen JB (2002) Biomarkers 7:322–336

    Article  PubMed  Google Scholar 

  8. 8.

    Sonnenschein C, Soto A, Fernández MF, Olea N, Olea-Serrano MF, Ruiz-Lopez MD (1995) Clin Chem 41:1888–1895

    PubMed  Google Scholar 

  9. 9.

    Rivas A, Olea N, Olea-Serrano F (1997) TRAC 16:613–619

    Article  Google Scholar 

  10. 10.

    Pazos P, Pérez P, Rivas A, Nieto R, Botella B, Crespo J, Olea-Serrano F, Fernandez MF, Exposito J, Olea N, Pedraza V (1998) Adv Exp Med Biol 444:29–40

    PubMed  Google Scholar 

  11. 11.

    Rivas A, Fernández MF, Cerrillo I, Ibarluzea J, Olea-Serrano MF, Pedraza V, Olea N (2001) APMIS 109:185–197

    Article  PubMed  Google Scholar 

  12. 12.

    Soto A, Chung K, Sonnenschein C (1994) Environ Health Perspect 102:380–383

    PubMed  Google Scholar 

  13. 13.

    Villalobos M, Olea N, Brotons J, Olea-Serrano MF, Ruiz de Almodovar JM, Pedraza V (1995) Environ Health Perspect 103:844–850

    PubMed  Google Scholar 

  14. 14.

    Soto A, Fernández MF, Luizzi MF, Oles Karasko AS, Sonnenschein C (1997) Environ Health Perspect 105:647–654

    PubMed  Google Scholar 

  15. 15.

    Ibarlucea JM, Fernández MF, Santamarina L, Olea-Serrano MF, Rivas AM, Aurrekoetxea J, Expósito J, Lorenzo M, Torné P, Pedraza V, Sasco A, Olea N (2004) Cancer causes control (in press)

  16. 16.

    Okond’ahoka O, Lavaur E, Lesech J, Lich NP, Le Moan G (1984) Ann Fals Exp Chim 77:531–538

    CAS  Google Scholar 

  17. 17.

    Medina MB, Sherman J (1986) Food Addit Contam 3:263–272.

    PubMed  Google Scholar 

  18. 18.

    Martinez Vidal JL, Moreno Frias M, Garrido Frenich A, Olea-Serrano F, Olea N (2002) Anal Bioanal Chem 372:766–75

    Article  PubMed  Google Scholar 

  19. 19.

    Moreno Frias M, Garrido Frenich A, Martinez Vidal JL, Mateu Sanchez M, Olea F, Olea N (2001) J Chromatogr B Biomed Sci Appl 760:1–15

    Article  PubMed  Google Scholar 

  20. 20.

    Soto A, Lin TM, Justicia H (1992) In: Colborn T, Clement C (eds) Chemically induced alterations in sexual development: the wildlife/human connection. Princeton Scientific, Princeton NJ, pp 295–309

  21. 21.

    Paris A, Rao D (1989) J Steroid Biochem 33:465–472

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Nilsson S, Gustafsson JA (2002) Crit Rev Biochem Mol Biol 37:1–28

    CAS  PubMed  Google Scholar 

  23. 23.

    Pérez P, Pulgar P, Olea-Serrano F, Villalobos M, Rivas A, Metzler M, Pedraza V, Olea N (1998) Environ Health Perspect 106:167–174

    CAS  PubMed  Google Scholar 

  24. 24.

    Rivas A, Lacroix M, Olea-Serrano F, Laios I, Leclercq G, Olea N (2002) J Steroid Biochem Mol Biol 82:45–53

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Güttes S, Failing K, Neumann K, Kleinstein J, Georgii S, Brunn H (1998) Arch Environ Contam Toxicol 35:140–147

    Article  PubMed  Google Scholar 

  26. 26.

    Dello Lacovo R, Celentano E, Strollo A, Lazzeta G, Capasso I, Randazzo G (1999) Adv Exp Med Biol 472:57–66

    PubMed  Google Scholar 

  27. 27.

    Aronson KJ, Miller AB, Woolcott ChG, Sterns E, McCready DR, Lickley LA (2000) Cancer Epidemiol Biomarkers Prev 9:55–63

    CAS  Google Scholar 

  28. 28.

    Campoy C, Jiménez M, Olea-Serrano MF, Moreno-Frias M, Cañabate F, Olea N, Bayés R, Molina-Font JA (2001) Early Hum Dev 65:183–190

    Article  Google Scholar 

  29. 29.

    Olea N, Olea-Serrano F, Lardelli P Rivas A, Olea-Serrano MF (1999) Toxicol Ind Health 15:151–158

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Gomez-Catalán J, Planas J, Figueras J, Camps M, Corbella J (1993) Bull Environ Contam Toxicol 51:160–164

    PubMed  Google Scholar 

  31. 31.

    Gomez-Catalán J, Lezaun M, Figueras J, Corbella J (1995) Bull Environ Contam Toxicol 54:534–540

    PubMed  Google Scholar 

  32. 32.

    Sala M, Sunyer J, Otero R, Santiago Silva M, Camps C, Grimalt J (1999) Occup Environ Med 56:152–158

    CAS  PubMed  Google Scholar 

  33. 33.

    Porta M, Kogevineas M, Zumeta E, Sunyer J, Ribas-Fito N, Grupo de Trabajo sobre Compuestos Tóxicos persistentes y salud del IMIM (2002) Gac Sanit 16:257–266

    CAS  PubMed  Google Scholar 

  34. 34.

    Botella B, Crespo J, Rivas A, Cerrillo I, Olea-Serrano F, Olea N (2004) Environ Res (in press)

  35. 35.

    Szymczak J, Milewicz A, Thijssen JH, Blankenstein MA, Daroszewski J (1998) Steroids 63:319–321

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Siiteri PK (1987) Am J Clin Nutr 45:277–282

    CAS  PubMed  Google Scholar 

  37. 37.

    Payne J, Scholze M, Kortenkamp A (2001) Environ Health Perspect 109:391–397

    CAS  PubMed  Google Scholar 

  38. 38.

    Shekhar PVM, Werdell J, Basrur VS (1997) J Natl Cancer Inst 89:1774–1782

    CAS  PubMed  Google Scholar 

  39. 39.

    Rajapakse N, Silva E, Kortenkamp A (2002) Environ Health Perspect 110:917–921

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Richard Davies for editorial assistance. This research was supported by grants from the Spanish Ministry of Health (FIS 02/1314, FIS G03/176 and FIS C03/081) and the EU Commission (QLRT4–1999-01422 and QLK4-CT-2002-00603).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nicolas Olea.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fernández, M.F., Rivas, A., Olea-Serrano, F. et al. Assessment of total effective xenoestrogen burden in adipose tissue and identification of chemicals responsible for the combined estrogenic effect. Anal Bioanal Chem 379, 163–170 (2004). https://doi.org/10.1007/s00216-004-2558-5

Download citation

Keywords

  • Biomarkers
  • Exposure assessment
  • Xenoestrogens
  • Endocrine disruption