Skip to main content
Log in

Radiofrequency glow-discharge devices for direct solid analysis

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The enormous potential of radiofrequency glow discharges (rf-GD) as photon, atom, or ion sources, coupled to spectrometric techniques, for rapid direct analysis of almost any conductor, semiconductor, or insulating material with good in-depth resolution has been demonstrated world-wide. This outstanding performance has prompted a great effort to develop and characterise rf-GD for direct materials analysis in recent years. The state of the art of rf-GD coupled to atomic absorption spectrometry, optical emission spectrometry, and mass spectrometry for direct solid analysis is reviewed here. A description of the principles of operation of the rf-GD and attempts to model these discharges are also given. Rf-GD instrumentation, both developed at research laboratories and commercially available, is described. Several practical examples are given demonstrating the capabilities of these techniques for bulk and depth-profile analysis. Finally, the research gaps to be filled for full implementation of rf-GD spectrometric techniques in industry and research centres alike for materials science studies and technical development are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brenner IB, Laqua K, Dvorachek M (1987) J Anal At Spectrom 2:623–627

    CAS  Google Scholar 

  2. De Gendt S, Schelles W, Van Grieken R, Müller V (1995) J Anal At Spectrom 10:681–687

    Google Scholar 

  3. Teng J, Barshick CM, Duckworth DC, Morton SJ, Smith DH, King FL (1995) Appl Spectrosc 49:1361–1366

    CAS  Google Scholar 

  4. Milton DMP, Hutton RC (1993) Spectrochim Acta B 48:39–52

    Article  Google Scholar 

  5. Schelles W, Maes K, De Gendt S, Van Grieken R (1996) Anal Chem 68:1136–1142

    CAS  Google Scholar 

  6. Betti M, Giannarelli S, Hiernaut T, Rasmussen G, Koch L (1996) Fresenius J Anal Chem 355:642–646

    CAS  Google Scholar 

  7. Winchester MR, Duckworth DC, Marcus RK (1993) Analysis of non-conducting sample types. In: Marcus RK (ed) Glow discharge spectroscopies. Plenum, New York, chap 7

  8. Winchester MR (1997) Radio frequency discharge. In: Payling R, Jones DG, Bengtson A (eds) Glow discharge optical emission spectrometry. Wiley, UK, chap 5

  9. Marcus RK (2003) Radio frequency glow discharges. In: Marcus RK, Broekaert JAC (eds) Glow discharge plasmas in analytical spectroscopy. Wiley, UK, chap 4

  10. Chapman RN (1980) Glow discharge processes. Wiley–Interscience, New York

  11. Wehner GK (1955) Adv Electron Electron Phys 7:239–298

    CAS  Google Scholar 

  12. Anderson GS, Mayer WN, Wehner GK (1962) J Appl Phys 33:2991–2992

    Google Scholar 

  13. Marcus RK (1993) J Anal At Spectrom 8:935–943

    Google Scholar 

  14. Winchester MR, Lazik C, Marcus RK (1991) Spectrochim Acta B 46:483–499

    Article  Google Scholar 

  15. Bogaerts A, Gijbels R, Goedheer W (1999) Jpn J Appl Phys 38:4404–4415

    Article  Google Scholar 

  16. Bogaerts A, Yan M, Gijbels R, Goedheer W (1999) J Appl Phys 86:2990–3001

    Article  Google Scholar 

  17. Belenguer Ph, Pitchford LC, Hubinois JC (2001) J Anal At Spectrom 16:1–3

    Article  Google Scholar 

  18. Bogaerts A, Gijbels R, Goedheer W (2001) J Anal At Spectrom 16:750–755

    Article  Google Scholar 

  19. Belenguer Ph, Guillot Ph, Therese L (2003) Surf Interface Anal 35:604–610

    Article  Google Scholar 

  20. Bogaerts A, Wilken L, Hoffmann V, Gijbels R, Wetzig K (2002) Spectrochim Acta B 57:109–119

    Article  Google Scholar 

  21. Payling R, Bonnot O, Fretel E, Rogerieux O, Aeberhard M, Michler J, Nelis T, Hansen U, Hartmann A, Belenguer P, Guillot P (2003) J Anal At Spectrom 18:656–664

    Article  Google Scholar 

  22. Marcus RK (1996) J Anal At Spectrom 11:821–828

    CAS  Google Scholar 

  23. Marcus RK, Harville TR, Mei Y, Shick CR Jr (1994) Anal Chem 66:902A–911A

    CAS  Google Scholar 

  24. Lazik C, Marcus RK (1994) Spectrochim Acta B 49:649–663

    Article  Google Scholar 

  25. Heintz MJ, Hieftje GM (1995) Spectrochim Acta B: 50:1125–1141

    Google Scholar 

  26. Hoffmann V, Uhlemann HJ, Prässler F, Wetzig K, Birus D (1996) Fresenius J Anal Chem 355:826–830

    CAS  Google Scholar 

  27. Prässler F, Hoffmann V, Schumann J, Wetzig K (1995) J Anal At Spectrom 10:677–680

    Google Scholar 

  28. Pereiro R, Bordel N, Costa JM, Pisonero J, Vazquez M, Fernandez B, Menéndez A, Sanz-Medel A (2003) Glow discharge sources for the analysis of non-conducting materials using photons and ions. Invited lecture in Colloquium Spectroscopicum Internationale XXXIII, Granada, Spain

  29. Wilken L, Hoffmann V, Uhlemann HJ, Siegel H, Wetzig K (2003) J Anal At Spectrom 18:645–655

    Google Scholar 

  30. Marshall KA, Casper TJ, Brushwyler KR, Mitchell JC (2003) J Anal At Spectrom 18:637–645

    Article  Google Scholar 

  31. Winchester MR (1998) J Anal At Spectrom 13:235–242

    CAS  Google Scholar 

  32. Harville TR, Marcus RK (1995) Anal Chem 67:1271–1277

    CAS  Google Scholar 

  33. Martínez R, Pérez C, Bordel N, Pereiro R, Fernández JL, Cannata-Andía JB, Sanz-Medel A (2001) J Anal At Spectrom 16:250–255

    Article  Google Scholar 

  34. Anfone A, Marcus RK (2001) J Anal At Spectrom 16:506–513

    CAS  Google Scholar 

  35. Pan X, Marcus RK (1998) Mikrochim Acta 129:239–250

    CAS  Google Scholar 

  36. Fernández B, Bordel N, Pereiro R, Sanz-Medel, A (2004) Anal Chem, in press

  37. Marcus RK (2000) J Anal At Spectrom 15:1271–1277

    Article  Google Scholar 

  38. Angeli J, Bengtson A, Bogaerts A, Hoffmann V, Hodoroaba VD (2003) J Anal At Spectrom 18:670–679

    Article  Google Scholar 

  39. Shimizu K, Habazaki H, Skeldon P, Thompson GE (2003) Spectrochim Acta B 58:1573–1583

    Article  Google Scholar 

  40. Weiss Z (1995) J Anal At Spectrom 10:891–895

    CAS  Google Scholar 

  41. Bengtson A, Hänström S, Lopiccolo E, Zacchetti N, Meilland R, Hocquaux H (1999) Surf Interface Anal 27:743–752

    Article  Google Scholar 

  42. Bengtson A, Hänström S (1998) J Anal At Spectrom 13:437–441

    CAS  Google Scholar 

  43. Marshall KA (1999) J Anal At Spectrom 14:923–928

    CAS  Google Scholar 

  44. Payling R, Aeberhard M, Delfosse D (2001) J Anal At Spectrom 16:50–55

    CAS  Google Scholar 

  45. Pérez C, Pereiro R, Bordel N, Sanz-Medel A (2000) J Anal At Spectrom 15:67–71

    Article  Google Scholar 

  46. Pérez C, Pereiro R, Bordel N, Sanz-Medel A (2000) J Anal At Spectrom 15:1247–1253

    Article  Google Scholar 

  47. Pisonero J, Pérez C, Pereiro R, Bordel N, Sanz-Medel A (2001) J Anal At Spectrom 16:370–375

    Article  Google Scholar 

  48. Bengtson A, Hänström S (1999) In Tomellini R (ed) Proc Fifth Int Conf on Prog Anal Chem in Steel Metals Industries, Luxemburg. Office for Official Publications of the European Communities, Brussels, pp 47–54

  49. Hodoroaba VD, Steers EBM, Hoffmann V, Wetzig K (2001) J Anal At Spectrom 16:43–49

    CAS  Google Scholar 

  50. Chapon P, Olivero C, Payling R (2003) Characterisation of surfaces and thin films down to the nanometer scale of conductive and non conductive materials by rf-GD–OES. Presented at the Colloquium Spectroscopicum Internationale XXXIII, Granada, Spain

  51. Jones DG, Payling R, Goweer SA, Boge EM (1994) J Anal At Spectrom 9:369–373

    CAS  Google Scholar 

  52. Fernández M, Bordel N, Pereiro R, Sanz-Medel A (1997) J Anal At Spectrom 12:1209–1214

    CAS  Google Scholar 

  53. Fernández B, Bordel N, Pereiro R, Sanz-Medel A (2003) J Anal At Spectrom 18:151–156

    Article  Google Scholar 

  54. Hoffmann V, Kurt R, Kämmer K, Thielsch R, Wirth T, Beck U (1999) Appl Spectrosc 53:987–990

    CAS  Google Scholar 

  55. Prässler F, Hoffmann V, Schumann J, Wetzig K (1996) Fresenius J Anal Chem 355:840–846

    Google Scholar 

  56. Shimizu K, Brown GM, Habazaki H, Kobayashi K, Skeldon P, Thompson GE, Wood GC (1999) Electrochim Acta 44:2297–2306

    Article  Google Scholar 

  57. Shimizu K, Habazaki H, Skeldon P, Thompson GE, Wood GC (1999) Surf Interface Anal 27:998–1002

    Article  Google Scholar 

  58. Dorka R, Kunze R, Hoffmann V (2000) J Anal At Spectrom 15:873–876

    Article  Google Scholar 

  59. Kimura S, Mitsui Y (2001) Appl Spectrosc 55:292–297

    Article  Google Scholar 

  60. Hodoroaba VD, Unger WES, Jenett H, Hoffmann V, Hagenhoff B, Kayser S, Wetzig K (2001) Appl Surf Sci 179:30–37

    Article  Google Scholar 

  61. Marcus RK, Anfone AB, Luesaiwong W, Hill TA, Perahia D, Shimizu K (2002) Anal Bioanal Chem 373:656–663

    Article  PubMed  Google Scholar 

  62. Hartenstein ML, Christopher SJ, Marcus RK (1999) J Anal At Spectrom 14:1039–1048

    Article  Google Scholar 

  63. Christopher SJ, Hartenstein ML, Marcus RK, Belkin M, Caruso JA (1998) Spectrochim Acta B 53:1181–1196

    Article  Google Scholar 

  64. Belkin M, Caruso JA, Christopher SJ, Marcus RK, Belkin M (1998) Spectrochim Acta B 53:1197–1208

    Article  Google Scholar 

  65. Hodoroaba VD, Steers EBM, Hoffmann V, Unger WES, Paatsch W, Wetzig K (2003) J Anal At Spectrom 18:521–526

    Article  Google Scholar 

  66. Fernández B, Bordel N, Pérez C, Pereiro R, Sanz-Medel A (2002) J Anal At Spectrom 17:1549–1555

    Article  Google Scholar 

  67. Harrison WW, Yang C, Oxley E (2001) Anal Chem 73:480A–487A

    Google Scholar 

  68. Winchester MR, Marcus RK (1992) Anal Chem 64:2067–2074

    CAS  Google Scholar 

  69. Pan C, King FL (1993) Appl Spectrosc 47:2096–2101

    CAS  Google Scholar 

  70. Lewis CL, Jackson GP, Doorn SK, Majidi V, King FL (2001) Spectrochim Acta B 56:487–501

    Article  Google Scholar 

  71. Jackson GP, Lewis CL, Doorn SK, Majidi V, King FL (2001) Spectrochim Acta B 56:2449–2464

    Article  Google Scholar 

  72. Lewis CL, Li L, Millay JT, Downey S, Warrick J, King FL (2003) J Anal At Spectrom 18:527–532

    Article  Google Scholar 

  73. Parker M, Marcus RK (1994) Appl Spectrosc 48:623–629

    CAS  Google Scholar 

  74. Absalan G, Chakrabarti CL, Hutton JC, Back MH, Lazik C, Marcus RK (1994) J Anal At Spectrom 9:45–52

    CAS  Google Scholar 

  75. Parker M, Marcus RK (1995) Spectrochim Acta B 50:617–638

    Article  Google Scholar 

  76. Absalan G, Chakrabarti CL, Headrick KL, Parker M, Marcus RK (1998) Anal Chem 70:3434–3443

    Article  Google Scholar 

  77. Parker M, Marcus RK (1996) Appl Spectrosc 50:366–376

    CAS  Google Scholar 

  78. Gilkinson JL, Held G, Chanin LM (1969) J Appl Phys 40:2350–2356

    Article  Google Scholar 

  79. Coburn JW, Kay E (1971) Appl Phys Lett 19:350–352

    Article  Google Scholar 

  80. Coburn JW, Taglauer E, Kay E (1974) J Appl Phys 45:1779–1786

    Article  Google Scholar 

  81. Coburn JW, Eckstein EW, Kay E (1975) J Vac Sci Technol 12:151–154

    Article  Google Scholar 

  82. Eckstein EW, Coburn JW, Kay E (1975) Int J Mass Spectrom Ion Phys 17:129–138

    Article  Google Scholar 

  83. Donohue DL, Harrison WW (1975) Anal Chem 47:1528–1531

    CAS  Google Scholar 

  84. Duckworth DC, Marcus RK (1989) Anal Chem 61:1879–1886

    CAS  Google Scholar 

  85. Duckworth DC, Marcus RK (1992) J Anal At Spectrom 7:711–715

    CAS  Google Scholar 

  86. Kawaguchi H, Tanaka T, Fukaya H (1991) Anal Sci 7:537–540

    CAS  Google Scholar 

  87. De Gendt S, Van Grieken R, Hang W, Harrison WW (1995) J Anal At Spectrom 10:689–695

    Google Scholar 

  88. Ohorodnik SK, Harrison WW (1993) Anal Chem 65:2542–2544

    CAS  Google Scholar 

  89. De Gendt S, Van Grieken R, Ohorodnik SK, Harrison WW (1995) Anal Chem 67:1026–1033

    Google Scholar 

  90. Shick Jr CR, Raith A, Marcus RK (1993) J Anal At Spectrom 8:1043–1048

    CAS  Google Scholar 

  91. Shick Jr CR, Raith A, Marcus RK (1994) J Anal At Spectrom 9:1045–1051

    CAS  Google Scholar 

  92. Shick Jr CR, Marcus RK (1996) Appl Spectrosc 50:454–466

    CAS  Google Scholar 

  93. Giglio JJ, Caruso JA (1995) Appl Spectrosc 49:900–906

    CAS  Google Scholar 

  94. Molle C, Wautelet M, Dauchot JP, Hecq M (1995) J Anal At Spectrom 10:1039–1045

    CAS  Google Scholar 

  95. Duckworth DC, Marcus RK (1990) Appl Spectrosc 44:649–655

    CAS  Google Scholar 

  96. Douglas YM, Duckworth DC, Cable PR, Marcus RK (1994) J Am Soc Mass Spectrom 5:845–851

    Article  Google Scholar 

  97. Pan C, King FL (1993) Anal Chem 65:3187–3193

    CAS  Google Scholar 

  98. Duckworth DC, Donohue DL Smith DH, Lewis TA, Marcus RK (1993) Anal Chem 65:2478–2484

    CAS  Google Scholar 

  99. Saprykin AI, Melchers FG, Becker JS, Dietze HJ, (1995) Fresenius J Anal Chem 363:570–574

    Google Scholar 

  100. Saprykin AI, Becker JS, Dietze HJ (1995) J Anal At Spectrom 10:897–901

    CAS  Google Scholar 

  101. Becker JS, Seifert G, Saprykin A, Dietze HJ (1996) J Anal At Spectrom 11:643–648

    CAS  Google Scholar 

  102. Jaeger R, Saprykin AI, Becker JS, Dietze HJ, Broekaert JAC (1997) Mikrochim Acta 125:41–44

    CAS  Google Scholar 

  103. Becker JS, Saprykin AI, Dietze HJ (1997) Int J Mass Spectrom 164:81–91

    Article  Google Scholar 

  104. Becker JS, Soman RV, Becker T, Panday VK, Dietze HJ (1998) J Anal At Spectrom 13:983–987

    Article  Google Scholar 

  105. Saprykin AI, Becker JS, Dietze HJ (1996) Fresenius J Anal Chem 355:831–835

    CAS  Google Scholar 

  106. Saprykin AI, Becker JS, Dietze HJ (1997) Fresenius J Anal Chem 359:449–453

    Article  Google Scholar 

  107. Myers DP, Heintz MJ, Mahoney PP, Li G, Hieftje GM (1994) Appl Spectrosc 48:1337–1346

    CAS  Google Scholar 

  108. Heintz MJ, Myers DP, Mahoney PP, Li G, Hieftje GM (1995) Appl Spectrosc 49:945–954

    CAS  Google Scholar 

  109. Pisonero J, Costa JM, Pereiro R, Bordel N, Sanz-Medel A (2004) Anal Bioanal Chem (in press)

  110. Marcus RK, Cable PR, Duckworth DC, Buchanan MV, Pochkowski JM, Weller RR (1992) Appl Spectrosc 46:1327–1330

    CAS  Google Scholar 

  111. McLuckey SA, Glish GL, Duckworth DC, Marcus RK (1992) Anal Chem 64:1606–1609

    CAS  Google Scholar 

  112. Peláez MV, Costa-Fernández JM, Pereiro R, Bordel N, Sanz-Medel A (2003) J Anal At Spectrom 18:864–871

    Article  Google Scholar 

  113. Saprykin AI, Melchers FG, Becker JS, Dietze HJ (1995) Fresenius J Anal Chem 353:570–574

    CAS  Google Scholar 

  114. Saprykin AI, Becker JS, Von der Crone U, Dietze HJ (1997) Fresenius J Anal Chem 358:145–147

    Article  Google Scholar 

  115. Jäger R, Becker JS, Dietze HJ, Broekaert JAC (1997) Fresenius J Anal Chem 358:214–217

    Article  Google Scholar 

  116. Saprykin AI (1999) Ind Lab (Diagnostics of Materials) 65:83–94

  117. Shick Jr CR, DePalma Jr PA, Marcus RK (1996) Anal Chem 68:2113–2121

    Article  Google Scholar 

  118. Gibeau TE, Hartenstein ML, Marcus RK (1997) J Am Soc Mass Spectrom 8:1214–1219

    Article  Google Scholar 

  119. Gibeau TE, Marcus RK (1998) J Anal At Spectrom 13:1303–1311

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from project PB-TBI01–09-C2 (“Plan I+D+I Principado de Asturias 2001/2004”) and from Project MAT2003–09243-C02 (Feder programme and Ministerio de Ciencia y Tecnología) is gratefully acknowledged. Jorge Pisonero acknowledges the financial support from a grant (FPI) of the Ministerio de Ciencia y Tecnología, associated with project BQU2000–0468.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Sanz-Medel.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pisonero, J., Costa, J.M., Pereiro, R. et al. Radiofrequency glow-discharge devices for direct solid analysis. Anal Bioanal Chem 379, 17–29 (2004). https://doi.org/10.1007/s00216-004-2531-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2531-3

Keywords

Navigation