Skip to main content

Airborne chemistry: acoustic levitation in chemical analysis

Abstract

This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shapeand stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications.

The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL–2 μL volume range and additions to the levitated drop can be made in the pL-volume range.

The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell–cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Bruin GJM (2000) Electrophoresis 21:3931–3951

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    McClain MA, Culbertson CT, Jacobson SC, Ramsey JM (2001) Anal Chem 73:5334–5338

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Li JJ, Thibault P, Bings NH, Skinner CD, Wang C, Colyer C, Harrison J (1999) Anal Chem 71:3036–3045

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Krishnan M, Namasivayam V, Lin RS, Pal R, Burns MA (2001) Curr Opin Biotech 12:92–98

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Manz A, Eijkel JCT (2001) Pure Appl Chem 73:1555–1561

    CAS  Google Scholar 

  6. 6.

    Yeung ES (1999) Anal Chem 71:A522–A529

    Article  Google Scholar 

  7. 7.

    Tong W, Yeung ES (1998) Appl Spectrosc 52:407–413

    Article  CAS  Google Scholar 

  8. 8.

    Krylov SN, Arriaga EA, Chan NWC, Dovichi NJ, Palcic MM (2000) Anal Biochem 283

  9. 9.

    de Mello AJ (2003) Lab Chip 3:29N–34N

    Article  Google Scholar 

  10. 10.

    Chen G, Ewing AG (1997) Crit Rev Neurobiol 11:59–90

    PubMed  Google Scholar 

  11. 11.

    Cannon DM, Winograd N, Ewing AG (2000) Annu Rev Bioph Biom 29:239–263

    Article  CAS  Google Scholar 

  12. 12.

    Welter E, Neidhart B (1997) Fresenius J Anal Chem 357:345–350

    CAS  Google Scholar 

  13. 13.

    Rohling O, Weitkamp C, Neidhart B (2000) Fresenius J Anal Chem 368:125–129

    CAS  PubMed  Google Scholar 

  14. 14.

    Petersson M, Nilsson J, Wallman L, Laurell T, Johansson J, Nilsson S (1998) J Chromatogr B 714:39–46

    Article  CAS  Google Scholar 

  15. 15.

    Santesson S, Andersson M, Degerman E, Johansson T, Nilsson J, Nilsson S (2000) Anal Chem 72:3412–3418

    CAS  PubMed  Google Scholar 

  16. 16.

    Nilsson S, Santesson S, Degerman E, Cedergren E, Johansson T, Nilsson J, Johansson J (2000) Proceedings of SPIE, scanning and force microscopies for biomedical applications II. San José, California, USA 2000, pp 81–90

  17. 17.

    Nilsson S, Santesson S, Degerman E, Johansson T, Laurell T, Nilsson J, Johansson J (2000) Micro total analysis systems. Kluwer, The Netherlands, pp 19–24

  18. 18.

    Lierke EG (1995) Forsch Ingenieurwes 61:201–216

    CAS  Google Scholar 

  19. 19.

    Hoffmann HG, Lentz E, Schrader B (1993) Rev Sci Instrum 64:823–824

    Article  CAS  Google Scholar 

  20. 20.

    Barnes MD, Ng KC, Whitten WB, Ramsey JM (1993) Anal Chem 65:2360–2365

    CAS  Google Scholar 

  21. 21.

    Berry MV, Geim AK (1997) Eur J Phys 18:307–313

    Article  Google Scholar 

  22. 22.

    Brandt EH (1989) Science 243:349–355

    Google Scholar 

  23. 23.

    Nahmias YK, Odde DJ (2002) IEEE J Quantum Electron 38:131–141

    Article  CAS  Google Scholar 

  24. 24.

    Visscher K, Brakenhoff GJ, Krol JJ (1993) Cytometry 14:105–114

    CAS  PubMed  Google Scholar 

  25. 25.

    Konig K (1998) Cell Mol Biol 44:721–733

    CAS  Google Scholar 

  26. 26.

    Grover SC, Skirtach AG, Gauthier RC, Grover CP (2001) J Biomed Opt 6:14–22

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Simon MD, Geim AK (2000) J Appl Phys 87:6200–6204

    Article  CAS  Google Scholar 

  28. 28.

    Chung SK, Trinh EH (1998) J Cryst Growth 194:384–397

    CAS  Google Scholar 

  29. 29.

    Kelton KF, Lee GW, Gangopadhyay AK, Hyers RW, Rathz TJ, Rogers JR, Robinson MB, Robinson DS (2003) Phys Rev Lett 90:Art No 195504

    Article  Google Scholar 

  30. 30.

    Bücks K, Müller HZ (1933) Phys 84:75–86

    Google Scholar 

  31. 31.

    Lierke EG (1996) Acustica 82:220–237

    Google Scholar 

  32. 32.

    Trinh EH, Hsu CJ (1986) J Acoust Soc Am 79:1335–1338

    CAS  Google Scholar 

  33. 33.

    Trinh EH, Hsu CJ (1986) J Acoust Soc Am 80:1757–1761

    CAS  Google Scholar 

  34. 34.

    Trinh EH, Robey JL (1994) Phys Fluids 6:3567–3579

    Article  CAS  Google Scholar 

  35. 35.

    Kawahara N, Yarin AL, Brenn G, Kastner O, Durst F (2000) Phys Fluids 12:912–923

    Article  CAS  Google Scholar 

  36. 36.

    Yarin AL, Brenn G, Keller J, Pfaffenlehner M, Ryssel E, Tropea C (1997) Phys Fluids 9:3300–3314

    Article  CAS  Google Scholar 

  37. 37.

    Trinh EH, Marston PL, Robey JL (1998) J Colloid Interface Sci 124:95–103

    Google Scholar 

  38. 38.

    Bayazitoglu Y, Mitchell GF (1995) J Thermophys Heat Transfer 9:694–701

    CAS  Google Scholar 

  39. 39.

    Yarin AL, Brenn G, Kastner O, Tropea C (2002) Phys Fluids 14:2289–2298

    Article  CAS  Google Scholar 

  40. 40.

    Weiser MH, Apfel RE (1982) J Acoust Soc Am 71:1261–1268

    Google Scholar 

  41. 41.

    Tuckermann R, Neidhart B, Lierke EG, Bauerecker S (2002) Chem Phys Lett 363:349–354

    Article  CAS  Google Scholar 

  42. 42.

    Davies AN, Jacob P, Stockhaus A, Kuckuk R, Hill W, Hergenroder R, Zybin A, Klockow D (2000) Appl Spectrosc 54:1831–1836

    CAS  Google Scholar 

  43. 43.

    Jacob P, Stockhaus A, Hergenroder R, Klockow D (2001) Fresenius J Anal Chem 371:726–733

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Yarin AL, Brenn G, Kastner O, Rensink D, Tropea C (1999) J Fluid Mech 399:151–204

    Article  CAS  Google Scholar 

  45. 45.

    Yarin AL, Brenn G, Rensink D (2002) Int J Heat Fluid Fl 23:471–486

    Article  CAS  Google Scholar 

  46. 46.

    Santesson S, Johansson J, Taylor LS, Levander I, Fox S, Sepaniak M, Nilsson S (2003) Anal Chem 75:2177–2180

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Santesson S, Cedergren-Zeppezauer ES, Johansson T, Laurell T, Nilsson J, Nilsson S (2003) Anal Chem 75:1733–1740

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Ishikawa Y, Komada S (1993) FUJITSU Sci Tech J 29:330–338

    CAS  Google Scholar 

  49. 49.

    Rhim W, Chung S (1991) J Cryst Growth 110:293–301

    CAS  Google Scholar 

  50. 50.

    Zheng B, Roach LS, Ismagilov RF (2003) J Am Chem Soc 125:11170–11171

    Article  CAS  Google Scholar 

  51. 51.

    Santesson S, Johansson T, Nilsson J, Degerman E, Rorsman P, Viberg P, Spégel P, Nilsson S (2001) ASMS, Chicago

  52. 52.

    Santesson S (2002) Licentiate Thesis, Lund University, Lund

  53. 53.

    Santesson S, Barinaga-Rementeria Ramírez I, Viberg P, Jergil B, Nilsson S (2003) Anal Chem 78:303-308

    Google Scholar 

  54. 54.

    Seaver M, Peele JR (1990) Appl Optics 29:4956–4961

    Google Scholar 

  55. 55.

    Johansson J, Witte DT, Larsson M, Nilsson S (1996) Anal Chem 68:2766–2770

    Article  CAS  Google Scholar 

  56. 56.

    Johansson T, Petersson M, Johansson J, Nilsson S (1999) Anal Chem 71:4190

    Article  CAS  Google Scholar 

  57. 57.

    Biswas A (1995) J Cryst Growth 147:155–164

    Article  CAS  Google Scholar 

  58. 58.

    Leopold N, Haberkorn M, Laurell T, Nilsson J, Baena JR, Frank J, Lendl B (2003) Anal Chem 75:2166–2171

    Article  CAS  PubMed  Google Scholar 

  59. 59.

    Cerenius Y, Oskarsson Å, Santesson S, Nilsson S, Kloo LJ (2003) Appl Crystallogr 36:163–164

    Article  CAS  Google Scholar 

  60. 60.

    Krishnan S, Price DL (2000) J Phys Condens Matter 12:R145–R176

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the following collaborators: Prof Thomas Laurell and Docent Johan Nilsson, Electrical Measurements, Lund Institute of Technology, Sweden, for the flow-through pL dispensers; Dr Thomas Johansson, Atomic Physics, Lund Institute of Technology, Sweden, for work on detection systems and computer programs; Dr Eila S. Cedergren-Zeppezauer, for vital collaboration on the protein precipitation application; Prof Eva Degerman, Molecular Signalling, Cell and Molecular Biology, Lund University, Sweden, for collaboration on adipocytes and lipolysis; Prof Patrik Rorsman, Molecular and Cellular Physiology, Lund University, Sweden, for pancreatic beta-cells and cell–cell communication; Dr Jonas Johansson, Analytical R&D, AstraZeneca R&D Mölndal, Sweden, for collaboration on detection systems, especially Raman spectroscopy, and Dr Lynne S. Taylor, Analytical R&D, AstraZeneca R&D Mölndal, Sweden, for collaboration on Raman detection of crystal polymorphs; Prof Michael Sepaniak, Department of Chemistry, University of Tennessee, Knoxville, TN, USA, for collaboration on SERS detection; Yngve Cerenius, Molecular Biophysics, Lund University, Lund; Prof Åke Oskarsson, Inorganic Chemistry, Lund University, Sweden, and Lars Kloo, Inorganic Chemistry, Royal Institute of Technology, Stockholm, Sweden for collaboration on the X-ray diffraction.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Staffan Nilsson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Santesson, S., Nilsson, S. Airborne chemistry: acoustic levitation in chemical analysis. Anal Bioanal Chem 378, 1704–1709 (2004). https://doi.org/10.1007/s00216-003-2403-2

Download citation

Keywords

  • Levitation Force
  • Acoustic Streaming
  • Nucleation Condition
  • Bioanalytical Chemistry
  • Levitation System