Analytical and Bioanalytical Chemistry

, Volume 377, Issue 7–8, pp 1159–1164 | Cite as

Chemometrics-assisted simultaneous determination of atenolol and chlorthalidone in synthetic binary mixtures and pharmaceutical dosage forms

  • Mónica C. F. Ferraro
  • Patricia M. Castellano
  • Teodoro S. KaufmanEmail author
Original Paper


Resolution of binary mixtures of atenolol (ATE) and chlorthalidone (CTD) with minimum sample pre-treatment and without analyte separation has been successfully achieved, using a new and rapid method based on partial least squares (PLS1) analysis of UV spectral data. The simultaneous determination of both analytes was possible by PLS1 processing of sample absorbances between 255 and 300 nm for ATE and evaluation of absorbances in the 253–268 nm region for CTD. The mean recoveries for synthetic samples were 100.3±1.0% and 100.7±0.7% for ATE and CTD, respectively. Application of the proposed method to two commercial tablet preparations in the content uniformity test showed them to contain 103.5±0.8% and 104.9±1.8% ATE respectively, as well as 103.4±1.2% and 104.5±2.2% CTD. Use of this method also allowed the elaboration of dissolution profiles of the drugs in two commercial combined formulation products, through the simultaneous determination of both drugs during the dissolution test. At the dissolution time of 45 min specified by USP XXIV, both pharmaceutical formulations complied with the test.


Atenolol Chlorthalidone PLS1 Dissolution Chemometric method 



The authors thank UNR for financial support, Dr. Alejandro C. Olivieri for providing access to the Jasco V-530 UV-Vis spectrophotometer, Droguería Prest for the donation of atenolol, and Dr. Lucio Jeroncic for the kind provision of chlorthalidone. T.S.K. is also grateful to CONICET.


  1. 1.
    (1993) Fifth report of the Joint National Committee on Detection, Evaluation and Treatment of High Blood Pressure (JNC V). Arch Intern Med 153:154CrossRefPubMedGoogle Scholar
  2. 2.
    Materson BJ, Reda DJ, Cushman DC, Henderson WG (1995) J Hum Hypertens 9:791PubMedGoogle Scholar
  3. 3.
    Dept. Health (2000) British Pharmacopoeia. Her Majesty's Stationary Office, London, UK, p49, 134Google Scholar
  4. 4.
    (1997) European Pharmacopoeia 3rd edn. Council of Europe, Strasbourg Cedex, France, pp418–419, 614–615Google Scholar
  5. 5.
    (2000) United States Pharmacopoeia XXIV edn. The USP Convention, Rockville, MD, USA, pp402–403, 175–176, 176–177, 2151Google Scholar
  6. 6.
    Sa'sa SI, Jalal IM, Khalil HS (1988) J Liq Chromatogr 11:1673Google Scholar
  7. 7.
    Ficarra R, Ficarra P, Tommasini A, Calabro ML, Guarniera-Fenech C (1985) Farmaco 40:307Google Scholar
  8. 8.
    Bonazzi D, Gotti R, Andrisano V, Cavrini V (1996) Farmaco 51:733Google Scholar
  9. 9.
    Giachetti C, Tenconi A, Canali S, Zanolo G (1997) J Chromatogr B 698:187CrossRefGoogle Scholar
  10. 10.
    Dadgar D, Kelly MT (1988) Analyst 113:1223PubMedGoogle Scholar
  11. 11.
    Gong L (1989) Yaowu Fenxi Zazhi 9:175Google Scholar
  12. 12.
    Wehner W (2000) Pharmazie 55:543PubMedGoogle Scholar
  13. 13.
    Xu L, Schechter I (1996) Anal Chem 68:2392CrossRefGoogle Scholar
  14. 14.
    Ferraro MCF, Castellano PM, Kaufman TS (2001) J Pharm Biomed Anal 26:443CrossRefPubMedGoogle Scholar
  15. 15.
    Martens H, Naes T (1989) Multivariate calibration. Wiley, Chichester, UKGoogle Scholar
  16. 16.
    Thomas EV (1994) Anal Chem A 66:795Google Scholar
  17. 17.
    Navalon A, Blanc R, del Olmo M, Vilchez JL (1999) Talanta 48:469CrossRefGoogle Scholar
  18. 18.
    Guiberteau A, Galeano T, Espinosa-Mansilla A, de Alba P L, Salinas F (1995) Anal Chim Acta 302:9CrossRefGoogle Scholar
  19. 19.
    Rupprecht M, Probst T (1997) Fresenius J Anal Chem 359:442CrossRefGoogle Scholar
  20. 20.
    Wold H, Martens H, Wold S (1983) In: Ruhe A, Kagstrom B (eds) The Multivariative calibration problem in chemistry solved by the PLS method. Springer, Heidelberg, p286Google Scholar
  21. 21.
    Haaland DM, Thomas EV (1988) Anal Chem 60:1193Google Scholar
  22. 22.
    Banakar UV, Lathia CD, Wood JH (1992) In: Banakar UV (ed) Pharmaceutical dissolution testing. Marcel Dekker, New York, pp189–250Google Scholar
  23. 23.
    Chen CS, Brown CW (1994) Pharm Res 11:979CrossRefPubMedGoogle Scholar
  24. 24.
    Murtha JL, Julian TN, Radebaugh GW (1988) J Pharm Sci 77:715PubMedGoogle Scholar
  25. 25.
    Surmeian M (1998) Drug Dev Ind Pharm 24:691PubMedGoogle Scholar
  26. 26.
    Banoglu E, Ozkan Y, Atay O (2000) Farmaco 55:477CrossRefPubMedGoogle Scholar
  27. 27.
    Mannucci C, Bertini J, Cocchini A, Perico A, Salvagnini F, Triolo A (1992) J Pharm Sci 81:1175PubMedGoogle Scholar
  28. 28.
    Ferraro MCF, Castellano PM, Kaufman TS (2002) J Pharm Biomed Anal 30:1121CrossRefPubMedGoogle Scholar
  29. 29.
    Dinç E, Serin C, Tugcu-Demiröz F, Doganay T (2003) Int J Pharm 250:339CrossRefPubMedGoogle Scholar
  30. 30.
    Langenbucher F (1972) J Pharm Pharmacol 24:979PubMedGoogle Scholar
  31. 31.
    Nelson KG, Wang LY (1970) J Pharm Sci 66:1758Google Scholar
  32. 32.
    Nelson KG, Wang LY (1970) J Pharm Sci 66:86Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Mónica C. F. Ferraro
    • 1
  • Patricia M. Castellano
    • 1
  • Teodoro S. Kaufman
    • 1
    • 2
    Email author
  1. 1.Area Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina
  2. 2.Instituto de Química Orgánica de Síntesis -IQUIOS-(CONICET-UNR)RosarioArgentina

Personalised recommendations