Skip to main content
Log in

Cholinesterase sensors based on screen-printed electrodes for detection of organophosphorus and carbamic pesticides

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cholinesterase sensors based on screen-printed electrodes modified with polyaniline, 7,7′,8,8′-tetracyanoquinodimethane (TCNQ), and Prussian blue have been developed and tested for detection of anticholinesterase pesticides in aqueous solution and in spiked grape juice. The influence of enzyme source and detection mode on biosensor performance was explored. It was shown that modification of the electrodes results in significant improvement of their analytical characteristics for pesticide determination. Thus, the slopes of the calibration curves obtained with modified electrodes were increased twofold and the detection limits of the pesticides were reduced by factors of 1.6 to 1.8 in comparison with the use of unmodified transducers. The biosensors developed make it possible to detect down to 2×10−8 mol L−1 chloropyrifos-methyl, 5×10−8 mol L−1 coumaphos, and 8×10−9 mol L−1 carbofuran in aqueous solution and grape juice. The optimal conditions for grape juice pretreatment were determined to diminish interference from the sample matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1.
Fig. 2.
Scheme 3.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

ChE:

Cholinesterase

TCNQ:

7,7′,8,8′-Tetracyanoquinodimethane

ChO:

Choline oxidase

AChE:

Acetylcholinesterase

BChE:

Butyrylcholinesterase

BSA:

Bovine serum albumin

2-PAM:

2-Pyridine aldoxime methiodide

References

  1. Namba N, Nolte CT, Jackrel J, Grob D (1971) Am J Med 50:475–492

    Google Scholar 

  2. Oehme DS, Oehme FW (1985) Vet Human Toxicol 27:22–37

    Google Scholar 

  3. Coye MJ, Barnett P, Midtling MJ, Velasco AR, Clements CL, O'Malley MA, Tobin MW (1986) Am J Ind Med 10:399–409

    CAS  Google Scholar 

  4. Basanta R, Nunez A, Lopez E, Fernandez M, Diaz-Fierros F (1995) Int J Environ Stud 48:211

    CAS  Google Scholar 

  5. Skladal P (1996) Food Technol Biotechnol 34:43–49

    CAS  Google Scholar 

  6. Further analysis on presence of residues and impact of plant protection products in EU. European Commission and Dutch Ministry for the Environment (1997)

  7. FQPA-targeted pesticide residue study. Michigan University—EPA, Michigan, 1999

  8. Navarro S, Oliva J, Barba A, Navarro G, Garcia MA, Zamarano M (2000) J Agric Food Chem 48:3537–3541

    CAS  Google Scholar 

  9. Marty JL, Garcia D, Rouillon R (1995) Trends Anal Chem 14:329–333

    CAS  Google Scholar 

  10. Evtugyn GA, Budnikov HC, Nikolskaya EB (1998) Talanta 46:465–484

    CAS  Google Scholar 

  11. Jaffrezic-Renault N (2001) Sensors 1:60–74

    Google Scholar 

  12. La Rosa C, Pariente F, Hernandez L, Lorenzo E (1994) Anal Chim Acta 295:273–282

    Article  Google Scholar 

  13. Hart AL, Collier WA, Janssen D (1997) Biosens Bioelectron 12:645–654

    CAS  Google Scholar 

  14. Skladal P, Nunes GS, Yamanaka H, Ribeiro ML (1997) Electroanalysis 9:1083–1087

    CAS  Google Scholar 

  15. Albareda-Sirvent M, Merkoci A, Alegret S (2001) Sens Actuators B 79:48–57

    Article  Google Scholar 

  16. Ivanov AN, Evtugyn GA, Gyurcsanyi RE, Toth K, Budnikov HC (2000) Anal Chim Acta 404:55–65

    CAS  Google Scholar 

  17. Starodub NF, Kanjuk NI, Kukla AL, Shirshov YM (1999) Anal Chim Acta 385:461–466

    CAS  Google Scholar 

  18. Dumschat C, Muller H, Stein K, Schwedt G (1991) Anal Chim Acta 252:7–10

    CAS  Google Scholar 

  19. Dzyadevich SV, Shul'ga A, Soldatkin AP, Hendji AMN, Jaffrezic-Renault N, Martelet C (1994) Electroanalysis 6:752–758

    Google Scholar 

  20. Rehak M, Snejdarkova M, Hianik T (1997) Electroanalysis 9:1072–1077

    CAS  Google Scholar 

  21. Palchetti I, Cagnini A, Del Carlo M, Coppi C, Mascini M, Turner APF (1997) Anal Chim Acta 337:315–321

    CAS  Google Scholar 

  22. Doretti L, Ferrara D, Lora S, Palma G (1999) Biotechnol Appl Biochem 29:67–72

    CAS  Google Scholar 

  23. Karyakin AA, Karyakina EE (1999) Sens Actuators B 57:268–273

    Article  Google Scholar 

  24. O'Halloran MP, Pravda M, Guilbault GG (2001) Talanta 55:605–611

    Article  CAS  Google Scholar 

  25. Garjonyte R, Malinauskas A (2000) Biosens Bioelectron 15:445–451

    Google Scholar 

  26. Deng Q, Li B, Dong S (1998) Analyst 123:1995–1999

    CAS  Google Scholar 

  27. Brainina Kh, Henze G, Stojko N, Malakhova N, Faller C (1999) Fresenius J Anal Chem 364:285–295

    Article  CAS  Google Scholar 

  28. Bachmann TT, Schmid RD (1999) Anal Chim Acta 401:95–103

    CAS  Google Scholar 

  29. Ricci F, Amine A, Palleschi G, Moscone D (2003) Biosens Bioelectron 18:165–174

    Article  CAS  PubMed  Google Scholar 

  30. MacDiarmid AG, Epstein A (1989) Faraday Discuss Chem Soc 317–332

  31. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) Biochem Pharmacol 7:88–95

    CAS  Google Scholar 

  32. Evtugyn GA, Rizaeva EP, Stoikova EE, Budnikov HC (1997) Electroanalysis 9:1124–1128

    CAS  Google Scholar 

  33. Ivanov AN, Lukachova LV, Evtugyn GA, Karyakina EE, Kiseleva SG, Budnikov HC, Orlov AV, Karpacheva GP, Karyakin AA (2002) Bioelectrochemistry 55:75–77

    CAS  Google Scholar 

  34. Brestkin AP, Rozengart EV, Abdulvachabov AA, Sadikov AS (1983) Uspekhi Khimii 52:1624–1647

    CAS  Google Scholar 

  35. Evtugyn GA, Budnikov HC, Nikolskaya EB (1996) Analyst 121:1911–1915

    CAS  Google Scholar 

  36. Gogol EV, Evtugyn GA, Marty JL, Budnikov HC, Winter VG (2000) Talanta 53:379–389

    CAS  Google Scholar 

  37. Martorell D, Cespedes F, Martinez-Fabregas E, Alegret S (1994) Anal Chim Acta 290:343–348

    CAS  Google Scholar 

  38. Kindervater R, Kunnecke W, Schmid RD (1990) Anal Chim Acta 234:113

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support of INTAS (grant No 00-273) is gratefully acknowledged. The authors also thank Professor A. A. Karyakin, Moscow State University, who provided the techniques for polyaniline doping and electrode modification and Professor G. P. Karpacheva, Institute for Petrochemical Synthesis, Russian Academy of Sciences, Moscow, for the synthesized polyaniline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady Evtugyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, A., Evtugyn, G., Budnikov, H. et al. Cholinesterase sensors based on screen-printed electrodes for detection of organophosphorus and carbamic pesticides. Anal Bioanal Chem 377, 624–631 (2003). https://doi.org/10.1007/s00216-003-2174-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2174-9

Keywords

Navigation