Skip to main content
Log in

Simple and sensitive assay for nucleic acids by use of the resonance light-scattering technique with copper phthalocyanine tetrasulfonic acid in the presence of cetyltrimethylammonium bromide

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

On the basis of enhancement of resonance light scattering (RLS) of copper phthalocyanine tetrasulfonic acid (CuTSPc) by nucleic acids and cetyltrimethylammonium bromide (CTMAB) under suitable conditions, a new RLS method for determination of nucleic acids in aqueous solutions has been developed. At pH 9.80–10.95 and ionic strength 0.01 mol L−1 (NaCl), the interaction of copper phthalocyanine tetrasulfonic acid with nucleic acids in the presence of cetyltrimethylammonium bromide results in enhanced RLS signals at 282.0 nm, 383.6 nm, and 616.2 nm in the enhanced regions. It was found that the enhanced RLS intensity at 383.6 nm was proportional to the concentration of nucleic acids within suitable ranges. The limits of detection were 10.6 ng mL−1 for fish sperm DNA and 32.4 ng mL−1 for calf thymus DNA when the concentration of copper phthalocyanine tetrasulfonic acid was 2.0×10−6 mol L−1. This method is rapid, simple and sensitive. In addition, the reagents used are relatively inexpensive, stable, and easily synthesised. The method can be applied to the determination of nucleic acids in the presence of coexisting substances, and we have applied it to the determination of DNA in synthetic samples, with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Lancker MV, Gheyssens LC (1986) Anal Lett 19:615

    Google Scholar 

  2. Gendimenico GJ, Bouquin PL, Tramposch KM (1988) Anal Biochem 173:45

    CAS  PubMed  Google Scholar 

  3. Eckhand N (1992) J Phys Chem 96:6045

    CAS  Google Scholar 

  4. Tuite E, Kelly TM (1995) Biopolymers 35:419

    CAS  Google Scholar 

  5. Udemfriend S, Zaltaman P (1962) Anal Biochem 3:49

    Google Scholar 

  6. Lepecq JB, Paoletli CC (1996) Anal Biochem 17:100

    Google Scholar 

  7. Labara C, Paigen K (1996) Anal Biochem 102:344

    Google Scholar 

  8. Hilwing T, Gropp A (1972) Exp Cell Res 75:122

    PubMed  Google Scholar 

  9. Li WY, Xu JG, Guo XQ, Zhu QZ, Zhao YB (1997) Anal Lett 30:527

    CAS  Google Scholar 

  10. Kumar CV, Asuncion EH (1993) J Am Chem Soc 115:8547

    CAS  Google Scholar 

  11. Huang CZ, Li KA, Tong SY (1996) Anal Chem 68:2259

    CAS  PubMed  Google Scholar 

  12. Huang CZ, Li KA, Tong SY (1997) Anal Chem 69:514

    CAS  PubMed  Google Scholar 

  13. Li Z, Li KA, Tong SY (2000) Talanta 51:63

    Article  CAS  Google Scholar 

  14. Li Z, Li KA, Tong SY (1999) Analyst 124:907

    Article  CAS  PubMed  Google Scholar 

  15. Huang CZ, Li YF, Liu XD (1998) Anal Chim Acta 375:89

    Article  Google Scholar 

  16. Ma C, Liu Y, Li K, Tong S (1999) Sci Bull 44:682

    Google Scholar 

  17. Wang YT, Zhao FL, Li KA, Tong SY (2000) Chem J Chin Univ 21:1491

    CAS  Google Scholar 

  18. Huang CZ, Li YF, Li KA, Tong SY (1997) Bull Chem Soc Jpn 70:1843

    CAS  Google Scholar 

  19. Huang CZ, Li KA, Tong SY (1997) Chem J Chin Univ 8:525

    Google Scholar 

  20. Li ZP, Li KA, Tong SY (2001) Talanta 55:669

    Article  CAS  Google Scholar 

  21. Liu R, Yang J, Wu X, Sun C (2002) Spectrochim Acta A 58:457

    Article  Google Scholar 

  22. Liu R, Yang J, Wu X (2002) Spectrochim Acta A 58:1935

    Article  Google Scholar 

  23. Lawton EA (1958) J Phys Chem 62:384

    CAS  Google Scholar 

  24. Berezin BD (1962) Russ J Inorg Chem 7:11

    Google Scholar 

  25. Berezin BD (1962) Russ J Inorg Chem 258:36

    Google Scholar 

  26. Miller GA (1978) J Phys Chem 82:616

    CAS  Google Scholar 

  27. Anglister J, Steinberg IZ (1979) Chem Phys Lett 65:50

    Article  CAS  Google Scholar 

  28. Anglister J, Steinberg IZ (1981) J Chem Phys 74:786

    CAS  Google Scholar 

  29. Garcia-Sanchez MA, Campero A (2000) Polyhedron 19:2383

    Article  CAS  Google Scholar 

  30. Wang M, Yang J, Wu X, Huang F (2000) Anal Chim Acta 422:151

    Article  CAS  Google Scholar 

  31. Wang YT, Zhao FL, Li KA, Tong SY (2000) Spectrochim Acta A 56:1827

    Article  Google Scholar 

  32. Jacobon KB, Turner JE (1980) Toxicology 16:1

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Education Commission Natural Science Foundation of Anhui Province (no. 2003kj143), and the Education Commission Youth Natural Science Foundation of Anhui Province (no. 2003jg105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Wu, Y., Chen, J. et al. Simple and sensitive assay for nucleic acids by use of the resonance light-scattering technique with copper phthalocyanine tetrasulfonic acid in the presence of cetyltrimethylammonium bromide. Anal Bioanal Chem 377, 675–680 (2003). https://doi.org/10.1007/s00216-003-2160-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2160-2

Keywords

Navigation