Skip to main content
Log in

Derivatisation in gas chromatographic determination of acidic herbicides in aqueous environmental samples

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper reviews derivatisation processes applied in chromatographic determination of acidic herbicides (with carboxyl and phenol groups), mainly in aqueous environmental samples. The discussion focuses on the basic derivatisation reactions used to convert herbicides to derivatives to make them analysable by gas chromatography, and possibly to reduce detection limits and/or increase extraction recovery from aqueous samples. The reactions are transesterification, esterification, silylation, alkylation, and extractive and pyrolytic alkylation. The reagents used to conduct the reactions are numerous. Diazomethane is a very efficient methylation reagent but explosive and toxic. Methyl iodide also ensures rapid and efficient methylation. Benzyl bromide can be used directly in water but derivatisation yield is low and reproducibility is poor. Butyl chloroformate and dimethyl sulfite can also be used for derivatisation in water, and acetic anhydride can be used for in-situ derivatisation of phenolic herbicides. For increasing selectivity of GC detection pentafluorobenzyl bromide (for ECD) and (2-cyanethyl)dimethyl(diethylamino)silane (for NPD) have been applied. Very characteristic ions are produced in mass spectra if silyl groups are introduced, e.g. by using bis(trimethylsilyl)trifluoroacetamide. Tetramethylammonium, trimethylphenylammonium, tetraalkylammonium, and trimethylsulfonium hydroxides and salts can by used for derivatisation at elevated temperature in the GC injection port. Extractive alkylation is relatively efficient if tetraalkylammonium salts with long chain alkyl groups are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Nilsson T, Baglio D, Galdo-Miques I, Madsen JO (1998) J Chromatogr A 826:211–216

    CAS  Google Scholar 

  2. Martin-Esteban A, Fernandez P, Fernandez-Alba A, Camara C (1998) Quim Anal 17:1–66

    Google Scholar 

  3. Hornsby AG, Wauchope RD, Herner AE (1996) (eds) Pesticide properties in the environment. Springer, Berlin Heidelberg New York

  4. Wells MJ, Zhou YL (2000) J Chromatogr A 885:237–250

    Article  CAS  PubMed  Google Scholar 

  5. Cuong NV, Bachmann TT, Schmid RD (1999) Fresenius J Anal Chem 364:584–589

    Article  CAS  Google Scholar 

  6. Macutkiewicz E, Rompa M, Zygmunt B (2002) 8th Int Symp Separation Sciences, 8–12 September 2002, Toruń, Poland, book of abstracts, p 282

  7. Macutkiewicz E, Rompa M, Zygmunt B (2003) Chem Inż Ekol, in press

  8. Macutkiewicz E, Rompa M, Zygmunt B (2003) Crit Rev Anal Chem 33:1–17

    CAS  Google Scholar 

  9. Rimmer DA, Johnson PD, Brown RH (1996) J Chromatogr A 755:245–250

    Article  PubMed  Google Scholar 

  10. Namieśnik J, Górecki T (2001) Pol J Environ Stud 10:77–84

    Google Scholar 

  11. Brondz I, Olsen I (1992) J Chromatogr A 598:309–312

    Article  CAS  Google Scholar 

  12. Rompa M, Macutkiewicz E, Zygmunt B (2002) Chem Inż Ekol 9:721

    Google Scholar 

  13. Namieśnik J (2001) J Sep Sci 24:151–153

    Article  Google Scholar 

  14. Namieśnik J, Gorecki T (2000) J Planar Chromatogr 13:404–413

    Google Scholar 

  15. Zygmunt B, Jastrzębska A, Namieśnik J (2001) Crit Rev Anal Chem 31:1–18

    CAS  Google Scholar 

  16. Pan L, Adams M, Pawliszyn J (1995) Anal Chem 67:4396–4405

    CAS  Google Scholar 

  17. Pan L, Pawliszyn J (1997) Anal Chem 69:196–204

    CAS  Google Scholar 

  18. Boyd-Boland AA, Chai M, Luo YZ, Zhang Z, Yang MJ, Pawliszyn JB, Górecki T (1994) Environ Sci Technol 28:569–574

    Google Scholar 

  19. De Ruiter C, Minnaard WA, Lingman H, Ktik EM, Brinkman UATh (1991) Int J Environ Anal Chem 43:79–85

    Google Scholar 

  20. Suzuki T, Watanabe S (1991) J Chromatogr A 541:359–364

    Article  CAS  Google Scholar 

  21. Schuster R, Gratzfeld-Husgen A, Application note, Analysis of phenoxy-acid herbicides and bentazone by HPLC with diode-array detection, Hewlett Packard

  22. Poole CF, Zlatkis A (1980) Anal Chem 52:1002–1016

    Google Scholar 

  23. Cserhati T, Forgacs E (1998) J Chromatogr B 717:157–178

    CAS  Google Scholar 

  24. Lee MR, Lee RJ, Lin YW, Chen CM, Hwang BH (1998) Anal Chem 70:1963–1968

    Article  CAS  PubMed  Google Scholar 

  25. Hodgeson J, Collins J, Bashe W (1994) J Chromatogr A 659:395–401

    Article  CAS  Google Scholar 

  26. Li N, Lee HK (2000) Anal Chem 72:3077–3084

    Article  CAS  PubMed  Google Scholar 

  27. Bucheli TD, Grubler FC, Muller SR (1997) Anal Chem 69:1569–1576

    Article  CAS  Google Scholar 

  28. Thompson TS, Morphy L (1995) J Chromatogr Sci 33:393–398

    CAS  Google Scholar 

  29. Croft MY, Murby EJ, Wells RJ (1994) Anal Chem 66:4459–4465

    CAS  Google Scholar 

  30. Field JA, Monohan KJ (1996) Chromatogr A 741:85–90

    Article  CAS  Google Scholar 

  31. Catalina MI, Dalluge J, Vreuls JJ, Brinkman UATh (2000) J Chromatogr A 877:153–166

    Article  CAS  PubMed  Google Scholar 

  32. Nolte J, Graß B, Heimlich F, Klockow D (1997) Fresenius J Anal Chem 357:763–767

    Article  CAS  Google Scholar 

  33. Nolte J, Kruger R (1999) Fresenius J Anal Chem 365:610–614

    Article  CAS  Google Scholar 

  34. Ding WH, Liu CH, Yeh SP (2000) J Chromatogr A 896:111–116

    Article  CAS  PubMed  Google Scholar 

  35. Bertrand MJ, Ahmed AW, Sarrasin B, Mallet VN (1987) Anal Chem, 59:1302–1306

  36. Li D, Park J, Oh JR (2001) Anal Chem 73:3089–3095

    Article  CAS  PubMed  Google Scholar 

  37. Agemian H, Chau ASY (1977) J Aqac 60:1070–1076

    CAS  Google Scholar 

  38. Pittertschastser K, Inreiter N, Schatzl A, Malissa H (1999) Fresenius J Anal Chem 365:338–350

    Article  Google Scholar 

  39. Vink M, van der Pol JM (1996) J Chromatogr A 733:361–366

    Article  CAS  Google Scholar 

  40. Vassilakis I, Tsipi D, Scoullos M (1998) J Chromatogr A 823:49–58

    Article  CAS  PubMed  Google Scholar 

  41. Henriksen T, Svensmark B, Lindhardt B, Juhler RK (2001) Chemosphere, 44:1531–1539

  42. Bao ML, Pantani F, Barbieri K, Burrini D, Grifini O (1996) Chromatographia 42:227–233

    Google Scholar 

  43. Jahr D (1998) Chromatographia 47:49–56

    CAS  Google Scholar 

  44. Ngan F, Ikesaki T (1991) J Chromatogr A 537:385–395

    Article  CAS  Google Scholar 

  45. Polska Norma, Jakość wody, Pr PN-ISO 15913:2000 (E)

  46. Buchholz K (1994) Anal Chem 66:160–167

    CAS  Google Scholar 

  47. EPA (1988) Method 515.1, Determination of chlorinated acids in water by gas chromatography with an electron capture detector. In: Methods for the determination of organic compounds in drinking water, EPA/600/4–88/039, pp 221–252. Available as publication no. PB-89–220461/AS from the National Technical Information Service, Springfield, VA

  48. Rompa M, Macutkiewicz E, Zygmunt B (2002) 7th Int Symp Advances in Analytical Separation Science, Chromatography and Electrophoresis, 3–5 June 2002, Portschach/Worthersee, Austria, book of abstracts, p 122

  49. Rompa M, Macutkiewicz E, Zygmunt B (2002) 8th Int Symp Separation Sciences, 8–12 September 2002, Toruń, Poland, book of abstracts, p 322

  50. Macutkiewicz E, Rompa M, Zygmunt B (2002) 7th Int Symp Advances in Analytical Separation Science, Chromatography and Electrophoresis, 3–5 June 2002, Portschach/Worthersee, Austria, book of abstracts p 107

  51. Amijee M, Cheung J, Wells RJ (1996) J Chromatogr A 738:43–45

    Article  CAS  Google Scholar 

  52. De Beer J, von Peteghem C, Heyndich A (1978) J Chromatogr A 157:97–110

    Article  Google Scholar 

  53. Stan HJ, Heberr T (1993) J Chromatogr A 653:55–62

    Article  CAS  Google Scholar 

  54. Chau ASY, Terry K (1976) J Assoc Off Anal Chem 59:633–636

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Polish Research Committee grant 7 T09A 045 21. The authors thank Professor J. Namieśnik for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Zygmunt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rompa, M., Kremer, E. & Zygmunt, B. Derivatisation in gas chromatographic determination of acidic herbicides in aqueous environmental samples. Anal Bioanal Chem 377, 590–599 (2003). https://doi.org/10.1007/s00216-003-2117-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2117-5

Keywords

Navigation