Skip to main content
Log in

Forensic discrimination of photocopy and printer toners II. Discriminant analysis applied to infrared reflection-absorption spectroscopy

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Copy toner samples were analyzed using reflection-absorption infrared microscopy (R-A IR). The grouping of copy toners into distinguishable classes achieved by visual comparison and computer-assisted spectral matching was compared to that achieved by multivariate discriminant analysis. For a data set containing spectra of 430 copy toners, 90% (388/430) of the spectra were initially correctly grouped into the classifications previously established by spectral matching. Three groups of samples that did not classify well contained too few samples to allow reliable classification. Samples from two other pairs of groups were similar and often misclassified. Closer examination of spectra from these groups revealed discriminating features that could be used in separate discriminant analyses to improve classification. For one pair of groups, the classification accuracy improved to 91% (81/89) and 97% (28/29), for the two groups, respectively. The other pair of groups were completely distinguishable from one another. With these additional tests, multivariate discriminant analysis correctly classified 96% of the 430 R-A IR toner spectra into the toner groups found previously by spectral matching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Cantu AA (1991) Anal Chem 63:847A-854A

    CAS  Google Scholar 

  2. Totty RN (1990) Forensic Sci Int 46:121–126

    Google Scholar 

  3. Gilmour CL (1994) Can Soc Forens Sci J 27:245–259

    Google Scholar 

  4. Totty RN (1990) Forensic Sci Rev 2:1–23

    Google Scholar 

  5. Kemp GS, Totty RN (1983) Forensic Sci Int 22:75–83

    Google Scholar 

  6. Williams RL (1983) Forensic Sci Int 22:85–95

    Article  Google Scholar 

  7. Zimmerman J, Mooney D, Kimmett MJ (1986) J Forensic Sci 31:489–493

    CAS  Google Scholar 

  8. Lennard CJ, Mazzella WD (1991) J Forensic Sci Soc 31:365–371

    CAS  Google Scholar 

  9. Shiver FC, Nelson MS, Nelson LK (1991) J Forensic Sci 36:145–152

    Google Scholar 

  10. Mazzella WD, Lennard CJ, Margot PA (1991) J Forensic Sci 36:449–465

    Google Scholar 

  11. Mazzella WD, Lennard CJ, Margot PA (1991) J Forensic Sci 36:820–837

    Google Scholar 

  12. Andrasko J (1994) J Forensic Sci 39:226–230

    Google Scholar 

  13. Andrasko J (1996) J Forensic Sci 41:812–823

    CAS  Google Scholar 

  14. Trzcinska BM, BrozekMucha Z (1997) Mikrochim Acta Suppl 14:235–237

    CAS  Google Scholar 

  15. Merrill RA, Bartick EG, Mazzella WD (1996) J Forensic Sci 41:264–271

    CAS  Google Scholar 

  16. Bartick EG, Merrill RA (1995) In: Jacob B, Bonte W (eds) Advances in forensic sciences, vol 3: Forensic criminalistics 1. Verlag, Berlin, pp 310–313

  17. Tandon G, Jasuja OP, Sehgal VN (1997) J Forensic Document Examiners 3:119–126

    CAS  Google Scholar 

  18. Brandi J, James B, Gutowski SJ (1997) Int J Forensic Document Examiners 3:324–344

    CAS  Google Scholar 

  19. Brown SD, Sum ST, Despagne F, Lavine BK (1996) Anal Chem 68:21R–61R

    Google Scholar 

  20. Duewer DL, Kowalski BR (1975) Anal Chem 47:526–530

    CAS  Google Scholar 

  21. Simon PJ, Giessen BC, Copeland TR (1977) Anal Chem 49:2285–2288

    CAS  Google Scholar 

  22. Merrill RA, Bartick EG, Taylor HJ III (2003) Anal Bioanal Chem Doi 10.1007/s00216-003-2074-z (in press)

  23. Bartick EG, Merrill RA, Egan WJ, Kochanowski BK, Morgan SL (1998) In: de Haseth JA (ed) Fourier transform spectroscopy: 11th international conference, American institute of physics Woodbury, pp 257–259 (13 August 1997); AIP Conference Proceedings 430:257–259

  24. Bartick EG, Tungol MW, Reffner JA (1994) Anal Chim Acta 288:35–42

    Article  CAS  Google Scholar 

  25. Sharaf MA, Illman DL, Kowalski BR (1986) Chemometrics. Wiley, New York

  26. Rousseeuw PJ (1991) J Chemom 5:1–20

    Google Scholar 

  27. Egan WJ, Morgan SL (1998) Anal Chem 70:2372–2379

    Article  CAS  Google Scholar 

  28. Jolliffe IT (1986) Principal component analysis. Springer, Berlin Heidelberg New York

  29. Wold S, Esbensen K, Geladi P (1987) Chemom Intell Lab Syst 2:37–52

    CAS  Google Scholar 

  30. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes: the art of scientific computing. Cambridge University Press, New York, pp 52–64

    Google Scholar 

  31. Fisher RA (1936) Ann Eugenics 7:179–188

    Google Scholar 

  32. Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic Press, San Diego

  33. Campbell NA, Atchley WR (1981) Syst Zool 30:268–280

    Google Scholar 

  34. Windig W, Haverkamp J, Kistemaker PG (1983) Anal Chem 55:81–88

    CAS  Google Scholar 

  35. Vallis LV, MacFie HJ, Gutteridge CS (1985) Anal Chem 57:704–709

    CAS  Google Scholar 

  36. Devaux MF, Bertrand D, Robert P, Qannari M (1988) Appl Spec 42:1015–1019

    CAS  Google Scholar 

  37. Sahota RS, Morgan SL (1992) Anal Chem 64:2383–2392

    CAS  Google Scholar 

  38. Ma CY, Bayne CK (1993) Anal Chem 65:772–777

    CAS  Google Scholar 

  39. Tukey JW (1958) Ann Math Stat 29:614

    Google Scholar 

  40. Mosteller F, Tukey JW (1986) In: Jones LV (ed) The collected works of John W. Tukey. Wadsworth & Brooks Monterey, vol IV, chap 15

  41. Jackson JE (1980) J Quality Technology 12:200–213

    Google Scholar 

  42. Egan WJ, Galipo RC, Kochanowski BK, Morgan SL, Bartick EG, Ward DC, Mothershead RF II, Miller ML (2003) Anal Bioanal Chem (in press)

Download references

Acknowledgements

This work was funded by the FBI Academy and by award number 97-LB-VX-0006 from the Office of Justice Programs, National Institute of Justice, Department of Justice. Points of view in this document are those of the authors and do not necessarily represent the official position of the US Department of Justice. Portions of this work were presented at Pittcon '97 (Atlanta, GA, 18 March 1997), at FACSS '97 (Providence, RI, 27–31 October, 1997), and at the American Academy of Forensic Sciences Meeting (San Francisco, CA, 12 February 1998).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward G. Bartick.

Additional information

This is publication number 03–03 of the Laboratory Division of the Federal Bureau of Investigation. Names of commercial manufacturers are provided for identification only, and inclusion does not imply endorsement by the Federal Bureau of Investigation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egan, W.J., Morgan, S.L., Bartick, E.G. et al. Forensic discrimination of photocopy and printer toners II. Discriminant analysis applied to infrared reflection-absorption spectroscopy. Anal Bioanal Chem 376, 1279–1285 (2003). https://doi.org/10.1007/s00216-003-2074-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2074-z

Keywords

Navigation