Skip to main content
Log in

Evaluation of the redox properties and anti/pro-oxidant effects of selected flavonoids by means of a DNA-based electrochemical biosensor

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Quercetin and rutin as well as catechin and epigallocatechin gallate were investigated, as widely distributed representatives of flavonols and flavanols, respectively, regarding their anti/pro-oxidant properties. The flavonoids are irreversibly oxidized at a dsDNA-modified screen-printed electrode within 0.368 to 0.449 V vs. SHE without binding to DNA. Using the DNA biosensor the detection scheme of a DNA prevention/degradation exploits the [Co(phen)3]3+ complex as an electrochemical DNA marker. Antioxidant activity of flavonoids was tested in a model cleavage mixture composed of 5×10−7 mol L−1 [Cu(phen)2]2+ as the catalyst, 1×10−3 mol L−1 ascorbic acid as the chemical reductant and atmospheric oxygen as the natural oxidant where reactive oxygen radicals are generated. The antioxidant activity increases with the concentration of flavonoids reaching a maximum where pro-oxidative behaviour becomes of importance. The pro-oxidant potency of flavonoids depends on the presence of atmospheric oxygen and follows the order quercetin>rutin>epigallocatechin gallate>catechin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Duthie SJ, Johnson W, Dobson VL (1997) Mutat Res 390:141

    Article  CAS  PubMed  Google Scholar 

  2. Pietta PG (2000) J Nat Prod 63:1035

    Article  CAS  PubMed  Google Scholar 

  3. Rice-Evans C (2001) Curr Med Chem 8:797

    CAS  Google Scholar 

  4. Abalea V, Cillard J, Dubos MP, Sergent O, Cillard P, Morel I (1999) Free Rad Bio Med 26:1457

    Article  CAS  Google Scholar 

  5. Boehm H, Boeing H, Hempel J, Raab B, Kroke A (1998) Z Ernahrungswiss 37:147

    CAS  Google Scholar 

  6. Ferguson LR (2001) Mutat Res 475:89

    Article  CAS  Google Scholar 

  7. Cai Q, Rahn RO, Zhang R (1997) Cancer Lett 119:99

    Article  CAS  Google Scholar 

  8. Duthie SJ, Collins AR, Duthie GG, Dobson VL (1997) Mutat Res 393:223

    Article  CAS  PubMed  Google Scholar 

  9. Ng TB, Liu F, Wang ZT (2000) Life Sci 66:709

    Article  CAS  PubMed  Google Scholar 

  10. Jain A, Martin MC, Parveen N, Khan NU, Parish JH, Hadi SM (1999) Phytother Res 13:609

    Article  CAS  PubMed  Google Scholar 

  11. Sestili P, Guidarelli A, Dacha M, Cantoni O (1998) Free Rad Biol Med 25:196

    Article  CAS  PubMed  Google Scholar 

  12. Anderson RF, Fisher LJ, Hara Y, Harris T, Mak WB, Melton LD, Packer JE (2001) Carcinogenesis 22:1189

    Article  CAS  PubMed  Google Scholar 

  13. Puppo A (1992) Phytochemistry 31:85

    Article  CAS  Google Scholar 

  14. Yamashita N, Tanemura H, Kawanishi S (1999) Mutat Res 425:107

    Article  CAS  PubMed  Google Scholar 

  15. Ohsima H, Yoshie Y, Auriol S, Gilibert I (1998) Free Rad Bio Med 25:1057

    Article  Google Scholar 

  16. Erdem A, Ozsoz M (2002) Electroanalysis 14:965

    Article  CAS  Google Scholar 

  17. Paleček E, Jelen F (2002) Crit Rev Anal Chem Acta 32:261

    Google Scholar 

  18. Wang J (2002) Anal Chim Acta 469:63

    Article  CAS  Google Scholar 

  19. Mascini M, Palchetti I, Marrazza G (2001) Fresenius J Anal Chem 369:15

    CAS  PubMed  Google Scholar 

  20. Paleček E, Fojta M (2001) Anal Chem 73:74A

  21. Kubičárová T, Fojta M, Vidic J, Havran L, Paleček E (2000) Electroanalysis 12:1422

    Google Scholar 

  22. Labuda J, Bučková M, Vaníčková M, Mattusch J, Wennrich R (1999) Electroanalysis 11:101

    Article  CAS  Google Scholar 

  23. Johnson MK, Loo G (2000) Mutat Res 459:211

    Article  CAS  PubMed  Google Scholar 

  24. Bučková M, Labuda J, Šandula J, Križková L, Štěpánek I, Ďuračková Z (2002) Talanta 56:939

    Google Scholar 

  25. Labuda J, Bučková M, Heilerová Ľ, Čaniová-Žiaková A, Brandšteterová E, Mattusch J, Wennrich R (2002) Sensors 2:1

    CAS  Google Scholar 

  26. Pang DW, Abruňa HD (1998) Anal Chem 70:3162

    Article  CAS  PubMed  Google Scholar 

  27. Dollimore LS, Gillerd RD (1973) J Chem Soc 933

  28. Yang B, Arai K, Kusu F (2001) Anal Sci 17:987

    CAS  PubMed  Google Scholar 

  29. Jorgensen LV, Cornett C, Justesen U, Skibsten LH (1998) Free Rad Res 29:339

    CAS  Google Scholar 

  30. Hendrickson HP, Kaufman AD, Lunte CE (1994) J Pharm Biomed Anal 12:325

    CAS  Google Scholar 

  31. Zhu Z, Li CLNQ (2002) Microchem J 71:57

    Article  CAS  Google Scholar 

  32. Noroozi M, Angerson WJ, Lean ME (1998) Am J Clin Nutr 67:1210

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Grant Agency VEGA of the Slovak Republic (Grant No. 1/9253/02) and by the Ministry of Agriculture of the Slovak Republic (Project No. 27-26 /99). The authors thank R. Nemcová and Z. Siváková for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ján Labuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labuda, J., Bučková, M., Heilerová, Ľ. et al. Evaluation of the redox properties and anti/pro-oxidant effects of selected flavonoids by means of a DNA-based electrochemical biosensor. Anal Bioanal Chem 376, 168–173 (2003). https://doi.org/10.1007/s00216-003-1884-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-1884-3

Keywords

Navigation