Skip to main content
Log in

Removal of heavy metals by using adsorption on alumina or chitosan

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The removal of heavy metals from wastewater by using activated alumina or chitosan as adsorbers was evaluated. Cd(II) and Cr(III) were employed as models of the behaviour of divalent and trivalent metal ions. The adsorption of Cd(II) and Cr(III) onto the adsorbers evaluated was studied as a function of pH, time, amount of adsorber, concentration of metal ions and sample volume. A 0.4-g portion of activated alumina can retain 0.6 mg Cr(III) and 0.2 mg Cd(II) from 20 mL sample adjusted at pH 4 and stirred for 30 min. It is therefore possible to totally decontaminate 500 mL of a waste containing 5 mg L−1 Cd(II) and Cr(III) with 10 g alumina. On the other hand, 0.4 g chitosan can totally decontaminate 20 mL of a pH 5 solution containing up to 50 mg L−1 Cd(II) and Cr(III). A 99.2±0.1% retention of Cd(II) and 83±1% retention of Cr(III) was obtained from 500 mL of a laboratory waste. The aforementioned strategies were applied for the minimization of analytical chemistry teaching laboratories and atomic spectrometry laboratory wastes. On comparing both adsorbers it can be concluded that chitosan is more preferable than alumina due to the reduced price of chitosan and the absence of side-pollution effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Carbonell V, Salvador A, de la Guardia M (1992) Fresenius J Anal Chem 342:529–537

    CAS  Google Scholar 

  2. Marqués MJ, Morales Rubio A, Salvador A, de la Guardia M (2001) Talanta 53:1229–1239

    Article  CAS  Google Scholar 

  3. Pannain MC, Santelli RE (1995) Talanta 42:1609

    Article  CAS  Google Scholar 

  4. Cooper C, Jiang JQ, Ouki S (2002) J Chem Technol Biotechnol 77:546–551

    Article  CAS  Google Scholar 

  5. Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) Water Res 33:2469–2479

    Article  CAS  Google Scholar 

  6. Kapoor A, Viraraghavan T (1998) J Environ Eng Asce 124:1020

    Article  CAS  Google Scholar 

  7. Jeong SY, Lee JM (1998) Bull Korean Chem Soc 19:218

    CAS  Google Scholar 

  8. Stirk WA, Van Staden J (2000) Botanica Marina 43:467

    CAS  Google Scholar 

  9. Zouboulis AI, Matis KA, Lazaridis NK (2001) Sep Sci Technol 36:349

    Article  CAS  Google Scholar 

  10. Ricon P, Lecuyer J, LeCloirec P (1998) Environ Technol 19:1005–1016

    CAS  Google Scholar 

  11. Dahbi S, Azzi M, de la Guardia M (1999) Fresenius J Anal Chem 363:404–407

    CAS  Google Scholar 

  12. Tseng RL, Wu FC, Juang RS (1999) J Environ Sci Health Part A 34:1815–1828

    Google Scholar 

  13. Schmuhl R, Krieg HM, Keizer K (2001) Water SA 27:1–7

    CAS  Google Scholar 

  14. Danubies L, Guimon C, Yiaconmi S, Guibol E (2001) Colloids Surf A 177:2–3

    Google Scholar 

  15. Dantas TND, Neto AAD, Moura MCP, Neto ELB, Telemaco ED (2001) Langmuir 17:4256–4260

    Article  Google Scholar 

  16. Kaminski W, Modrzejewska Z (1997) Sep Sci Technol 32:2659–2668

    CAS  Google Scholar 

  17. Kawamura Y, Yoshida H, Asai S, Kurahashi I, Tanibe H (1997) Sep Sci Technol 32:1959–1974

    CAS  Google Scholar 

  18. Bang SS, Pazirandeh M (1999) J Microencap 16:489–499

    Article  CAS  Google Scholar 

  19. Bassi R, Prasher SO, Simpson BK (1999) Environ Technol 20:1177–1182

    CAS  Google Scholar 

  20. Bassi R, Prasher SO, Simpson BK (2000) Sep Sci Technol 35:547

    Article  CAS  Google Scholar 

  21. Jansson Charrier M, Guibal E, Roussy J, Surjous R (1996) Water Sci Technol 34:169

    Article  Google Scholar 

  22. Minamisawa M, Nakajima S, Mitsue Y, Miyazawa K, Ueno K, Hatori A, Miyajima S, Hoshino M, Yoshida S, Takai N (2002) Nippon Kagaka Kaishi 459–461

Download references

Acknowledgements

Authors acknowledge the financial support of the Dirección General de Enseñanza Superior e Investigación Científica Project No. PB98–0947-C02–02 and of the Ministerio de Ciencia y Tecnología Project No. AGL2002–00729. M.C.A. acknowledges the grant from the Delegación de Medioambiente of the University of Valencia for studies on academic residue minimization. We also thank Miss I.E. Martí-Herrero and J. López-Burguete for their collaborative work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Luisa Cervera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luisa Cervera, M., Carmen Arnal, M. & de la Guardia, M. Removal of heavy metals by using adsorption on alumina or chitosan. Anal Bioanal Chem 375, 820–825 (2003). https://doi.org/10.1007/s00216-003-1796-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-1796-2

Keywords

Navigation