Skip to main content
Log in

Labile rhizosphere soil solution fraction for prediction of bioavailability of heavy metals and rare earth elements to plants

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A labile rhizosphere soil solution fraction has been recommended to predict the bioavailability of heavy metals and rare earth elements to plants. This method used moist rhizosphere soil in combination with a mixture of 0.01 mol L–1 of low-molecular-weight organic acids (LMWOAs) as extractant. The extracted soil solutions were fractionated into two colloidal fractions of <0.45 μm (F3) and <0.2 μm (F2), and one truly dissolved fraction including free metal ions and inorganic and organic complexes (fraction<molecular weight cutoff of 1 kD). Hereafter, the fraction of the truly dissolved fraction refers to labile rhizosphere soil solution fraction, Flrss. For the soil solutions extracted with a mixture of LMWOAs the concentrations of heavy metals and rare earth elements in F2 and F3 were quite similar. However, the mean concentrations of Cr, Ni, Zn, Cu, Pb, Cd, La, Ce, Pr, and Nd in Flrss accounted for 79.9%, 91.3%, 90.8%, 60.1%, 77.5%, 75.3%, 81.2%, 77.2%, 80.3%, and 79.5%, respectively, of their concentrations in F2. In contrast, there were no differences in the extractable metal concentrations between the three fractions while the first step of the method recommended by the European Community of Reference (BCR), where 0.1 mol L–1 acetic acid was used as an extractant. The single correlation analysis was made between metal concentrations in the different fractions of soil solutions and their concentrations in wheat. If the first step of BCR method was used there was no good correlation between heavy metals in soil pools and that in wheat shoots and roots. When LMWAOs were used a good correlation was obtained between the concentrations of heavy metals in soil pools and that in wheat roots, which followed a general order of r1 kD, LMWOAs >r0.2 μm, LMWOAs ≈r0.45 μm, LMWOAs. In the case of rare earth elements the good correlation was obtained for both the wheat roots and shoots. Generally, the correlation coefficients obtained by LMWAOs were better than that obtained by the first step of BCR method. Therefore, LMWAOs and Flrss were strongly recommended to predict the bioavailability of metals in soil pools to plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Reference

  1. Randall GW, Schulte EE, Corey RB (1976) Soil Sci Soc Am J 40:282–287

    CAS  Google Scholar 

  2. LeClaire JP, Chang AC, Levesque CS, Sposito G (1984) Soil Sci Soc Am J 48:509–513

    CAS  Google Scholar 

  3. Chlopecka A, Adriano DC (1996) Environ Sci Technol 30:3294–3303

    Article  CAS  Google Scholar 

  4. Maiz I, Arambarrim I, Garcia R, Millan E (2000) Environ Pollut 110:3–9

    Article  CAS  Google Scholar 

  5. Sauve S, Norvell WA, McBride M, Hendershot W (2000) Environ Sci Technol 34:291–296

    Article  CAS  Google Scholar 

  6. Krishnamurti GSR, Huang PM, Van Rees KCJ, Kozak LM, Rostad HPW (1995) Analyst 120:659–665

    CAS  Google Scholar 

  7. Ruby MV, Schoot R, Brattin W, Goldade M, Post G, Harnois M, Mosby DE, Casteel SW, Berti W, Carpenter M, Edwards D, Cargin D, Chappell W (1999) Environ Sci Technol 33:3697–3705

    Article  CAS  Google Scholar 

  8. Wang WX, Guo LD (2000) Environ Sci Technol 34:4571–4576

    Article  CAS  Google Scholar 

  9. Campbell PGC (1995) In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. Wiley, Chichester, pp 45–102

  10. Bell PF, Chaney RL, Angle JS (1991) Plant Soil 130:51–62

    CAS  Google Scholar 

  11. Benson WH, Alberts JJ, Allen HE, Hunt CD, Newman MC, In Hamelink JL, Landrum PF, Bergman HL, Benson WH (1994) (eds) Bioavailability, physical, chemical and biological interactions. Lewis, Boca Raton, pp 63–71

  12. Apte SC, Barley GE (1995) In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. Wiley, Chichester, pp 284–295

  13. Xue HB, Sigg L (1993) Limnol Oceanogr 38:1200–1213

    CAS  Google Scholar 

  14. Jackson BP, Miller WP (1999) Environ Sci Technol 33:270–275

    Article  CAS  Google Scholar 

  15. Hsieh M, Dorsey JG (1995) Anal Chem 67:48–57

    CAS  PubMed  Google Scholar 

  16. Cullen JT, Sherrell RM (1999) Mar Chem 67:233–247

    Article  CAS  Google Scholar 

  17. Bertine KK, VernonClark R (1996) Mar Chem 55:189–204

    Article  CAS  Google Scholar 

  18. Benoit G, Oktay-Marshall SD, Cantu AI, Hood EM, Colemam CH, Corapcioglu MO, Santschi PH (1994) Mar Chem 45:307–336

    CAS  Google Scholar 

  19. Wells ML, Smith GJ, Bruland KW (2000) Mar Chem 71:143–163

    CAS  Google Scholar 

  20. Grout H, Wiesner MR, Bottero JY (1999) Environ Sci Technol 33:831–839

    CAS  Google Scholar 

  21. Levesque L, Probst J-L (1999) Int J Environ Anal Chem 73:109–128

    Google Scholar 

  22. Novozamsky I, Lexmond TM, Houba VJG (1993) Int J Environ Anal Chem 51:47–58

    CAS  Google Scholar 

  23. Shuman LM (1985) Soil Sci 140:11–22

    CAS  Google Scholar 

  24. Ure AM, Quevauviller P, Muntau H, Griepink B (1993) Int J Environ Anal Chem 51:135–151

    Google Scholar 

  25. Templeton DM, Ariese F, Cornelis R, Danielsson L, Muntau H, Van Leeuwen HP, Łobiński R (2000) Pure Appl Chem 8:1453–1470

    Google Scholar 

  26. Curl EA, Truelove B (1986) The rhizosphere. Springer, Berlin Heidelberg New York

  27. Kraffczyk I, Trolldenir G, Beringer H (1984) Soil Biol Biochem 16:316–322

    Article  Google Scholar 

  28. Kennedy VH, Sanchez AL, Oughton DH, Rowland AP (1997) Analyst 122:89R–100R

    CAS  Google Scholar 

  29. Wang ZW, Shan XQ, Zhang SZ (2001) Anal Chim Acta 441:147–156

    CAS  Google Scholar 

  30. Jones DL (1998) Plant Soil 205:25–44

    Google Scholar 

  31. Hue NV, Graddock GR, Adams F (1986) Soil Sci Soc Am J 50:28–34

    CAS  Google Scholar 

  32. Chairridchai P, Ritchie GSP (1990) Soil Sci Soc Am J 54:1242–1248

    CAS  Google Scholar 

  33. Zhang SZ, Shan XQ, Li FL (2000) Int J Environ Anal Chem 76:283–294

    CAS  Google Scholar 

  34. Zhang H, Zhao FJ, Sun B, Davison W, Mcgrath SP (2001) Environ Sci Technol 35:2602–2607

    Article  CAS  PubMed  Google Scholar 

  35. Petruzzelli G (1989) Agric Eco Environ 27:493–503

    CAS  Google Scholar 

  36. Shuman LM (1991) In: Mortvedt JJ, Cox FR, Shuman LM, Welch RM (eds) Micronutrients in agriculture, 2nd edn. Soil Science Society of America, Madison, WI, pp 113–114

  37. Lao JS (1988) Handbook for soil agriculture and chemical analysis. Agriculture Press, Beijing, China, pp 101, 236, 386

  38. Youssef RA, Chino M (1989) Soil Sci Plant Nutr 35:609–621

    CAS  Google Scholar 

  39. Zhang SZ, Shan XQ (1997) At Spectrosc 19:140–144

    Google Scholar 

  40. Wen B, Yuan DA, Shan XQ, Li FL, Zhang SZ (2001) Chem Spec Bioavail 13:39–47

    CAS  Google Scholar 

  41. Jones DL, Darrah PR (1996) Plant Soil 178:153–160

    CAS  Google Scholar 

  42. Jones DL, Darrah PR (1994) Plant Soil 163:1–12

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant No.20237010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-quan Shan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, Xq., Wang, Z., Wang, W. et al. Labile rhizosphere soil solution fraction for prediction of bioavailability of heavy metals and rare earth elements to plants. Anal Bioanal Chem 375, 400–407 (2003). https://doi.org/10.1007/s00216-002-1711-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-002-1711-2

Keywords

Navigation