Skip to main content
Log in

Speciation of mercury in soil and sediment by selective solvent and acid extraction

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In order to characterize the mercury hazard in soil, a sequential extraction scheme has been developed to classify mercury species based on their environmental mobility and/or toxicity for either routine lab analysis or on-site screening purposes. The alkyl mercury species and soluble inorganic species that contribute to the major portion of potential mercury toxicity in the soil are extracted by an acidic ethanol solution (2% HCl+10% ethanol solution) from soil matrices as "mobile and toxic" species. A High-Performance Liquid Chromatography (HPLC) system coupled with Inductively Coupled Plasma Mass Spectrometry (ICP–MS) detection has been developed to further resolve the species information into soluble inorganic species (Hg2+), methylmercury(II) (MeHg+) and ethylmercury(II) (EtHg+) species. Alternatively, these species can be separated into "soluble inorganic mercury" and "alkyl mercury" sub-categories by Solid-Phase Extraction (SPE). A custom Sulfydryl Cotton Fiber (SCF) material is used as the solid phase medium. Optimization of the SCF SPE technique is discussed. Combined with a direct mercury analyzer (DMA-80), the SCF SPE technique is a promising candidate for on-site screening purposes. Following the ethanol extraction, the inorganic mercury species remaining in soil are further divided into "semi-mobile" and "non-mobile" sub-categories by sequential acid extractions. The "semi-mobile" mercury species include mainly elemental mercury (Hg) and mercury-metal amalgams. The non-mobile mercury species mainly include mercuric sulfide (HgS) and mercurous chloride (Hg2Cl2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Bloom NS, Porcella DB (1994) Nature 357:695

    Google Scholar 

  2. Bloom NS, Gill GA, Cappellino S, Dobbs C, Mcshea L, Driscoll C, Mason R, Rudd J (1999) Environ Sci Technol 33:7–13

    Article  CAS  Google Scholar 

  3. Westöö G (1966) Anal Scand 20:2131

    Google Scholar 

  4. Padberg S, Burow M, Stoeppler M (1993) Fresenius J Anal Chem 346:686–688

    CAS  Google Scholar 

  5. Bulska E, Baxter DC, Frech W (1991) Anal Chim Acta 12:545–554

    Article  Google Scholar 

  6. Horvat M, Byrne AR, May K (1990) Talanta 37:207–212

    Article  CAS  Google Scholar 

  7. Alli A, Jaffe R, Jones R (1994) J High Resol Chromatogr 17:745–748

    CAS  Google Scholar 

  8. Lansens P, Baeyens W (1990) Anal Chim Acta 228:93–99

    Article  CAS  Google Scholar 

  9. Filippelli M (1987) Anal Chem 59:116–118

    PubMed  Google Scholar 

  10. Jiang G, Ni Z, Wang S, Han H (1989) Fresenius J Anal Chem 334:27–30

    CAS  Google Scholar 

  11. Hempel M, Hintelmann H, Wilken RD (1992) Analyst 117:669–672

    CAS  PubMed  Google Scholar 

  12. Beauchemin D, Siu KWM, Berman SS (1988) Anal Chem 60:2587–2590

    CAS  Google Scholar 

  13. Horvat M, Bloom NS, Liang L (1993) Anal Chim Acta 281:135–152

    CAS  Google Scholar 

  14. Rezende MCR, Campos RC, Curtius AJ (1993) J Anal At Spectrom 8:247–251

    CAS  Google Scholar 

  15. Bloom NS (1989) Can J Fish Aquat Sci 46:1131–1140

    CAS  Google Scholar 

  16. Cai Y, Jaffe R, Alli A, Jones RD (1996) Anal Chim Acta 334:251–259

    Article  CAS  Google Scholar 

  17. Bloom N Fitzgerald WF (1988) Anal Chim Acta 208:151–161

    CAS  Google Scholar 

  18. Horvat M, Liang L, Bloom NS (1993) Anal Chim Acta 282:153–168

    CAS  Google Scholar 

  19. Jian W, McLeod CW (1992) Talanta 39:1537–1542

    Article  CAS  Google Scholar 

  20. Liang L, Horvat, M, Bloom NS (1994) Talanta 41:371–379

    CAS  Google Scholar 

  21. Emteborg H, Baxter DC, Sharp M, Frech W (1995) Analyst 120:69–77

    CAS  Google Scholar 

  22. Lansens P, Meuleman C, Leermakers M, Baeyens W (1990) Anal Chim Acta 234:417–424

    Article  CAS  Google Scholar 

  23. Carro Diaz AM, Lorenzo-Ferreira RA, Cela-Torrijos R (1994) J Chromatogr A 683:245–252

    PubMed  Google Scholar 

  24. Bushee DS (1988) Analyst 113:1167–1170

    CAS  Google Scholar 

  25. Bloxham MJ, Gachanja A, Hill SJ, Worsfold PJ (1996) J Anal At Spectrom 11:145–148

    CAS  Google Scholar 

  26. Huang CW, Jiang SJ (1993) J Anal At Spectrom 8:681–686

    CAS  Google Scholar 

  27. Boylan HM, Ronning TA, DeGroot RL, Kingston HM (2000) Environ Test Anal 9:8–13

    CAS  Google Scholar 

  28. USEPA (2000) Method 7473, Mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry, Test methods for evaluating solid waste, physical/chemical methods SW 846, Update IVA. US Government Printing Office (GPO), Washington, DC

  29. Feldman C (1974) Anal Chem 46:99–102

    CAS  Google Scholar 

  30. Liu D, Liu R, Cui H (1992) Fenxi-Shiyanshi 11:32–34

  31. Wilken RD, Hintelmann H (1991) Water Air Soil Pollut 56:427–437

    CAS  Google Scholar 

  32. Sanchez-Uria JE, Sanz-Medel A (1998) Talanta 47:509–524

    Article  CAS  Google Scholar 

  33. Lee YH, Mowrer J (1989) Anal Chim Acta 221:259–268

    Article  CAS  Google Scholar 

  34. Yu G, Pang S (1984) Kexue-Tongbao 10:1338–1342

  35. Wang D, Liu S, Zhao L (1984) Fenxi-Huaxue 12:241–246

  36. Wang Z, Cui X (1990) Chin J Oceanol Limnol 8:37–45

    CAS  Google Scholar 

  37. Dwyer FP, Mellor DP (1964) Chelating agents and metal chelates. Academic Press, New York

  38. King RB (1994) Encyclopedia of inorganic chemistry. Wiley, Chichester, UK

  39. USEPA (2000) Method 3052, Microwave assisted acid digestion of siliceous and organically based matrices, Test methods for evaluating solid waste, physical/chemical methods SW 846. US Government Printing Office (GPO), Washington, DC

  40. Davis A, Bloom NS, Que-Hee SS (1997) Risk Anal 17:557–569

    CAS  PubMed  Google Scholar 

  41. Revis NW, Osborne TR, Sedgley D, King A (1989) Analyst 114:823–825

    CAS  Google Scholar 

  42. Revis NW, Osborne TR, Holdsworth G, Hadden C (1989) Water Air Soil Pollut 35:105–113

    Google Scholar 

  43. Eganhouse RP, Young DR, Johnson JN (1978) Environ Sci Technol 12:1151–1157

    CAS  Google Scholar 

  44. Harsh JB, Doner HEJ (1981) Environ Qual 10:333–337

    CAS  Google Scholar 

  45. USEPA (2001) Draft method 3200, Mercury species by selective solvent extraction and acid digestion. US Government Printing Office (GPO), Washington, DC

  46. Kingston HM (1995) US Patent 5 414 259

  47. USEPA (2000) Method 6800, Elemental and speciated isotope dilution mass spectrometry, Test methods for evaluating solid waste, physical/chemical methods SW 846, Update IVA. US Government Printing Office (GPO), Washington, DC

Download references

Acknowledgement

The authors thank RCRA, USEPA, SAIC and Allegheny Power Inc. for funding and financial support, as well as Milestone Inc., Agilent Technologies and Duquesne University for instrument and material support.

The authors would like to dedicate this paper to Mr Oliver Fordham who has been an inspiration to the environmental methods development community over the past decade. Mr Fordham after initiating this work passed away this past year and will be missed by all whom he so selflessly served.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Kingston, H.M., Boylan, H.M. et al. Speciation of mercury in soil and sediment by selective solvent and acid extraction. Anal Bioanal Chem 375, 428–436 (2003). https://doi.org/10.1007/s00216-002-1701-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-002-1701-4

Keywords

Navigation