Skip to main content

Advertisement

Log in

Multiplex PCR design strategy used for the simultaneous amplification of 10 Y chromosome short tandem repeat (STR) loci

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The simultaneous amplification of multiple regions of a DNA template is routinely performed using the polymerase chain reaction (PCR) in a process termed multiplex PCR. A useful strategy involving the design, testing, and optimization of multiplex PCR primer mixtures will be presented. Other multiplex design protocols have focused on the testing and optimization of primers, or the use of chimeric primers. The design of primers, through the close examination of predicted DNA oligomer melting temperatures (T m) and primer–dimer interactions, can reduce the amount of testing and optimization required to obtain a well-balanced set of amplicons. The testing and optimization of the multiplex PCR primer mixture constructed here revolves around varying the primer concentrations rather than testing multiple primer combinations. By solely adjusting primer concentrations, a well-balanced set of amplicons should result if the primers were designed properly. As a model system to illustrate this multiplex design protocol, a 10-loci multiplex (10plex) Y chromosome short tandem repeat (STR) assay is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A,B.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Chamberlain JS, Gibbs RA, Rainer JE, Nguyen PN, Casey CT (1988) Nucleic Acids Res 16:11141–11156

    CAS  PubMed  Google Scholar 

  2. Henegariu O, Hirschman P, Killian K, Kirsch C, Lengauer R, Maiwald K (1994) Andrologia 26:97–106

    CAS  PubMed  Google Scholar 

  3. Shuber AP, Skoletsky J, Stern R, Handelin BL (1993) Hum Mol Genet 2:153–158

    CAS  PubMed  Google Scholar 

  4. Kimpton CP, Fisher D, Watson S, Adams M, Urquhart A, Lygo J, Gill P (1994) Int J. Legal Med 106:302–311

    Google Scholar 

  5. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Yandell MG et al (2000) Science 5507:1304–1368

    Google Scholar 

  6. Lander ES, Linton LM, Birren B, Nusbaum C et al (2001) Nature 409:860–921

    CAS  PubMed  Google Scholar 

  7. Evans JC, Frayling TM, Cassell PG, Saker PJ, Hitman GA, Walker M, Levy JC, O'Rahily S, Rao PV, Bennett AJ, Jones EC, Menzel S, Prestwich P, Simecek N, Wishart M, Dhillon R, Fletcher C, Milward A, Demaine A, Wilkin T, Horikawa Y, Cox NJ, Bell GI, Ellard S, McCarthy MI, Hattersley AT (2001) Am J Hum Genet 69:544–552

    CAS  PubMed  Google Scholar 

  8. Prince JA, Feuk L, Sawyer SL, Gottfries J, Rickstein A, Nagga K, Bogdanovic N, Blennow K, Brookes AJ (2001) Eur J Hum Genet 9:437–444

    Article  CAS  PubMed  Google Scholar 

  9. Edwards A, Civitello A, Hammond HA, Caskey CT (1991) Am J Hum Genet 49:746–756

    Google Scholar 

  10. Prinz M, Boll K, Baum H, Shaler B (1997) Forensic Sci Int 85:209–218

    CAS  PubMed  Google Scholar 

  11. Jobling MA, Tyler–Smith C (1995) Trends Genet 11:449–456

    CAS  PubMed  Google Scholar 

  12. Kayser M, Caglia A, Corach D, Fretwell N, Gehrig C, Graziosi G, Heidorn F, Herrmann S, Herzog B, Hidding M, Honda K, Jobling M, Krawczak M, Leim K, Meuser S, Meyer E, Oesterreich W, Pandya A, Parson W, Penacino G, Perez–Lezaun A, Piccinini A, Prinz M, Schmitt C, Schneider PM, Szibor R, Teifel–Greding J, Weichhold GM, de Knijff P, Roewer L (1997) Int J Legal Med 110:125–133

    Google Scholar 

  13. Redd AJ, Clifford SL, Stoneking M (1997) Biol Chem 378:923–927

    CAS  PubMed  Google Scholar 

  14. Gusmao L, Gonzalez–Neira A, Pestoni C, Brion M, Lareu MV, Carracedo A (1999) Forensic Sci Int 106:163–172

    CAS  PubMed  Google Scholar 

  15. Henegariu O, Heerema SR, Vance GH, Vogt PH (1997) BioTechniques 23:504–511

    Google Scholar 

  16. Butler JM, Ruitberg CM, Vallone PM (2001) Fresenius J Anal Chem 369:200–205

    Article  CAS  PubMed  Google Scholar 

  17. Shuber AP, Grondin VJ, Klinger KW (1995) Genome Res 5:488–493

    CAS  Google Scholar 

  18. Schwartz LS, Tarleton J, Popovich B, Seltzer WK, Hoffman EP (1992) Am J Hum Genet 51:721–729

    CAS  PubMed  Google Scholar 

  19. Sullivan KM, Pope S, Gill P, Robertson JM (1992) PCR Methods Applic 2:34–40

    CAS  Google Scholar 

  20. Ziegle JS, Su Y, Corcoran KP, Nie L, Mayrand PE, Hoff LB, McBride LJ, Kronick MN, Diehl SR (1992) Genomics 14:1026–1031

    CAS  PubMed  Google Scholar 

  21. Butler JM, McCord BR, Jung JM, Wison MR, Budowle B, Allen RO (1994) J Chromatogr 658:271–280

    CAS  Google Scholar 

  22. Butler JM (1997) Separation of DNA restriction fragments and PCR products. In: Heller C (ed) Analysis of nucleic acids by capillary electrophoresis. Vieweg, Germany, pp 195–217

  23. Butler JM, Schoske R, Vallone PM, Kline MC, Redd AJ, Hammer MF (2002) Forensic Sci Int 129:10–24

    Article  CAS  PubMed  Google Scholar 

  24. Rozen S, Skaletsky HJ (1998) Primer3 (primer 3_www.cgi v 0.2); Code available at http://www.genome.wi.mit.edu/cgi-bin/primer/primer3_www.cgi

  25. Butler JM (2001) Forensic DNA typing. Academic Press, San Diego, pp 191–195

  26. Budowle B, Baechtel FS (1990) Appl Theor Electrophor 1:181–187

    CAS  PubMed  Google Scholar 

  27. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  28. Karlin S, Altschul SF (1993) Proc Natl Acad Sci USA 90:5873–5877

    CAS  PubMed  Google Scholar 

  29. Gill P, Brenner C, Brinkmann B, Budowle B, Carracedo A, Jobling MA, de Knijff P, Kayser M, Krawczak M, Mayr WR, Morling N, Olaisen B, Pascali V, Roewer L, Schneider PM, Sajantila A, Tyler–Smith C (2001) Forensic Sci Int 124:5–10

    Article  CAS  PubMed  Google Scholar 

  30. Lazaruk K, Wallin J, Holt C, Nguyen T, Walsh SP (2001) Forensic Sci Int 119:1–10

    Article  CAS  PubMed  Google Scholar 

  31. White PS, Tatum OL, Deaven LL, Longmire JL (1999) Genomics 57:433–437

    CAS  PubMed  Google Scholar 

  32. Ruitberg CM, Reeder DJ, Butler JM (2001) Nucleic Acids Res 29:320–322

    Article  CAS  PubMed  Google Scholar 

  33. Ayub Q, Mohyuddin A, Qamar R, Mazhar K, Zerjal T, Mehdi SQ, Tyler–Smith C (2000) Nucleic Acids Res 28:e8

    CAS  PubMed  Google Scholar 

  34. Rychlik W, Spencer WJ, Rhoads RE (1990) Nucleic Acids Res 18:6409–6412

    PubMed  Google Scholar 

  35. Owczarzy R, Vallone PM, Gallo FJ, Paner TM, Lane MJ, Benight AS (1997) Biopolymers 44:217–239

    Article  CAS  PubMed  Google Scholar 

  36. SantaLucia J (1998) Proc Natl Acad Sci USA 95:1460–1465

    Article  CAS  PubMed  Google Scholar 

  37. Roewer L, Kayser M, Nagy M, de Knijff P (1996) Adv Forensic Haemogenet 6:124–126

    CAS  Google Scholar 

  38. Whitaker JP, Clayton TM, Uruhart AJ, Millican ES, Downes TJ, Kimpton CP, Gill P (1995) Biotechniques 22:670–677

    Google Scholar 

  39. Sparkes R, Kimpton CP, Watson S, Oldroyd NJ, Clayton TM, Barnett L, Arnold J, Thompson D, Urquhart A, Gill P (1996) Int J Legal Med 109:186–194

    CAS  PubMed  Google Scholar 

  40. Takahashi M, Kato Y, Mukoyama H, Kanaya H, Kamiyama S (1997) Forensic Sci Int 90:1–9

    Article  CAS  PubMed  Google Scholar 

  41. Beasley EM, Myers RM, Cox DR, Lazzeroni LC (1999) In: Innis MA, Gelfand DH, Snisky JJ (eds) PCR applications: protocols for functional genomics. Academic Press, San Diego, pp 55–71

  42. Magnuson VL, Ally DS, Nylund SJ, Karanjawala ZE, Rayman JB, Knapp JI, Lowe AL, Ghosh S, Collins FS (1996) Biotechniques 21:1004–1010

    PubMed  Google Scholar 

  43. Brownstein MJ, Carpten JD, Smith JR (1996) Biotechniques 20:1004–1010

    Google Scholar 

  44. Giusti WC, Adriano T (1993) PCR Methods Applications 2:223–227

    CAS  Google Scholar 

  45. Butler JM, Devaney JM, Marino MA, Vallone PM (2001) Forensic Sci Int 119:87–96

    Article  CAS  PubMed  Google Scholar 

  46. Tully G, Sullivan KM, Gill P (1993) Hum Genet 92:637–638

    PubMed  Google Scholar 

Download references

Acknowledgements

Certain commercial equipment, instruments, and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology or the US Department of Defense nor does it imply that any of the materials, instruments, or equipment identified are necessarily the best available for the purpose. The work described here was funded by National Institute of Justice (NIJ) research grants 1997–LB–VX–0003 to John Butler through the NIST Office of Law Enforcement Standards. Richard Schoske is a PhD candidate in chemistry at American University under Professor Jim Girard and is funded by the United States Air Force, through the Air Force Institute of Technology. The technical assistance of Margaret Kline is greatly appreciated for extracting and providing the DNA samples used in this study. The authors also thank David Duewer for his helpful review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Schoske.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoske, R., Vallone, P.M., Ruitberg, C.M. et al. Multiplex PCR design strategy used for the simultaneous amplification of 10 Y chromosome short tandem repeat (STR) loci. Anal Bioanal Chem 375, 333–343 (2003). https://doi.org/10.1007/s00216-002-1683-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-002-1683-2

Keywords

Navigation