Skip to main content
Log in

Non-covalent interactions constructor of 3D networks of Co (II) and Cu (II) complexes with pyridine ligands: systematic theoretical and experimental survey

  • Correspondence
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Molecular geometries and 3D networks of two reported complexes with mixed ligands formulated as [Co(pydco)(bipy)(H2O)2] (1) and [Cu(Hpydco)(bipy)Cl] (2) (H2pydco = pyridine-N-oxide-2,5-dicarboxylic acid, bipy = 2,2′-bipyridine) were studied by density functional theory computations. The molecular units of each compound were optimized as neutral building blocks for their respective 3D networks (1-net and 2-net). Pertinent networks, in amount of or more than summation of binding energies of involved non-covalent forces, have been stabilized. Accordingly, the Grimme's D3 dispersion correction has been applied for accurate computation of those long-distance forces. Therefore, determination of binding energy of each involved non-covalent interaction has been calculated using B3LYP and Grimme’s DFT-D3 and QTAIM manners. The measured results of both methods interestingly are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

References

  1. Ariga K, Hill JP, Lee MV et al (2008) Challenges and breakthroughs in recent research on self-assembly. Sci Technol Adv Mater 9:014109. https://doi.org/10.1088/1468-6996/9/1/014109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eshtiagh-Hosseini H, Mirzaei M, Biabani M et al (2013) Insight into the connecting roles of interaction synthons and water clusters within different transition metal coordination compounds of pyridine-2,5-dicarboxylic acid: experimental and theoretical studies. CrystEngComm 15:6752–6768. https://doi.org/10.1039/c3ce40743h

    Article  CAS  Google Scholar 

  3. Cao T, Peng Y, Liu T et al (2014) Assembly of a series of d10 coordination polymers of pamoic acid through a mixed-ligand synthetic strategy: syntheses, structures and fluorescence properties. CrystEngComm 16:10658–10673. https://doi.org/10.1039/c4ce01356e

    Article  CAS  Google Scholar 

  4. Chahkandi M, Keivanloo Shahrestanaki A, Mirzaei M et al (2020) Crystal and molecular structure of [Ni{2-H2 NC(=O)C5 H4 N}2 (H2O)2][Ni{2,6-(O2 C)2 C5 H3 N}2 ]·4.67H2O; DFT studies on hydrogen bonding energies in the crystal. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 76:591–603. https://doi.org/10.1107/S2052520620006472

    Article  CAS  Google Scholar 

  5. Cimino P, Gomez-Paloma L, Duca D et al (2004) Comparison of different theory models and basis sets in the calculation of 13C NMR chemical shifts of natural products. Magn Reson Chem 42:26–33. https://doi.org/10.1002/mrc.1410

    Article  CAS  Google Scholar 

  6. Friesner RA (1999) Correlated ab initio electronic structure calculations for large molecules. J Phys Chem A 103:1913–1928. https://doi.org/10.1021/jp9825157

    Article  CAS  Google Scholar 

  7. Rulíšek L, Havlas Z (2003) Using DFT methods for the prediction of the structure and energetics of metal-binding sites in metalloproteins. Int J Quantum Chem 91:504–510. https://doi.org/10.1002/qua.10442

    Article  CAS  Google Scholar 

  8. Eshtiagh-Hosseini H, Chahkandi M, Housaindokht MR, Mirzaei M (2013) Bromide oxidation mechanism by vanadium bromoperoxidase functional models with new tripodal amine ligands: a comprehensive theoretical calculations study. Polyhedron 60:93–101. https://doi.org/10.1016/j.poly.2013.04.058

    Article  CAS  Google Scholar 

  9. Riley KE, Pitoňák M, Jurečka P, Hobza P (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 110:5023–5063.https://doi.org/10.1021/cr1000173

  10. Chahkandi M, Bhatti MH, Yunus U et al (2018) Novel cocrystal of N-phthaloyl-β-alanine with 2,2–bipyridyl: synthesis, computational and free radical scavenging activity studies. J Mol Struct 1152:1–10. https://doi.org/10.1016/j.molstruc.2017.09.046

    Article  CAS  Google Scholar 

  11. Mirzaei M, Eshtiagh-Hosseini H, Chahkandi M et al (2012) Comprehensive studies of non-covalent interactions within four new Cu(ii) supramolecules. CrystEngComm 14:8468. https://doi.org/10.1039/c2ce26442k

    Article  CAS  Google Scholar 

  12. Chahkandi M (2016) Theoretical investigation of non-covalent interactions and spectroscopic properties of a new mixed-ligand Co(II) complex. J Mol Struct 1111:193–200. https://doi.org/10.1016/j.molstruc.2016.01.065

    Article  CAS  Google Scholar 

  13. Braga D, Grepioni F, Maini L, D’Agostino S (2017) Making crystals with a purpose; a journey in crystal engineering at the University of Bologna. IUCrJ 4:369–379. https://doi.org/10.1107/S2052252517005917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Braga D, Grepioni F, Maini L, d’Agostino S (2018) From solid-state structure and dynamics to crystal engineering. Eur J Inorg Chem 2018:3597–3605. https://doi.org/10.1002/ejic.201800234

    Article  CAS  Google Scholar 

  15. Thakur TS, Dubey R, Desiraju GR (2015) Crystal structure and prediction. Annu Rev Phys Chem 66:21–42. https://doi.org/10.1146/annurev-physchem-040214-121452

    Article  CAS  PubMed  Google Scholar 

  16. Biradha K, Su CY, Vittal JJ (2011) Recent developments in crystal engineering. Cryst Growth Des 11:875–886. https://doi.org/10.1021/cg101241x

    Article  CAS  Google Scholar 

  17. Sun L, Niu S, Jin J et al (2006) Synthesis, structure and surface photovoltage of a series of Ni II coordination polymers. Eur J Inorg Chem 2006:5130–5137. https://doi.org/10.1002/ejic.200600721

    Article  CAS  Google Scholar 

  18. Zhang D-J, Song T-Y, Wang L et al (2009) Hydrothermal synthesis, structure and rare ferromagnetic property of a 3-D Nd(III) metal–organic framework based on mixed pyridine-2,5-dicarboxylic acid/nicotinic acid ligands. Inorg Chim Acta 362:299–302. https://doi.org/10.1016/j.ica.2008.03.103

    Article  CAS  Google Scholar 

  19. Mautner FA, Albering JH, Vicente R et al (2013) Synthesis, structure and magnetic investigations of polycarboxylato-copper(II) complexes. Polyhedron 54:158–163. https://doi.org/10.1016/j.poly.2013.02.038

    Article  CAS  Google Scholar 

  20. Süss-Fink G, Cuervo LG, Therrien B et al (2004) Mono and oligonuclear vanadium complexes as catalysts for alkane oxidation: synthesis, molecular structure, and catalytic potential. Inorg Chim Acta 357:475–484. https://doi.org/10.1016/j.ica.2003.05.005

    Article  CAS  Google Scholar 

  21. Kamatchi TS, Chitrapriya N, Lee H et al (2012) Ruthenium(II)/(III) complexes of 4-hydroxy-pyridine-2,6-dicarboxylic acid with PPh3/AsPh3 as co-ligand: impact of oxidation state and co-ligands on anticancer activity in vitro. Dalton Trans 41:2066–2077. https://doi.org/10.1039/C1DT11273B

    Article  CAS  PubMed  Google Scholar 

  22. Xue L, Luo F, Che Y, Zheng J (2007) A noninterpenetrating 3D coordination network with rare (4,6)-connected (4·53·62)2(42·56·64·83) topology. J Mol Struct 832:132–137. https://doi.org/10.1016/j.molstruc.2006.08.025

    Article  CAS  Google Scholar 

  23. Shankar K, Das B, Baruah JB (2013) Organic cations controlling the nuclearity of copper(ii) 2,5-pyridinedicarboxylates. RSC Adv 3:26220. https://doi.org/10.1039/c3ra44008g

    Article  CAS  Google Scholar 

  24. Wei Y, Hou H, Li L et al (2005) From dicarboxylic acid to tetranuclear metallamacrocyclic complex and 1D and 2D polymers. Cryst Growth Des 5:1405–1413. https://doi.org/10.1021/cg049596i

    Article  CAS  Google Scholar 

  25. Huang S-L, Zhang L, Lin Y-J, Jin G-X (2013) Discrepant gas adsorption in isostructural heterometallic coordination polymers: strong dependence of metal identity. CrystEngComm 15:78–85. https://doi.org/10.1039/C2CE26072G

    Article  CAS  Google Scholar 

  26. Sun H-L, Wang X-L, Jia L et al (2012) Lanthanide-pyridyl-2,5-dicarboxylate N-oxide frameworks with rutile topology. CrystEngComm 14:512–518. https://doi.org/10.1039/C1CE05698K

    Article  CAS  Google Scholar 

  27. Hosseini-Hashemi Z, Mirzaei M, Jafari A et al (2019) Effects of N -oxidation on the molecular and crystal structures and properties of isocinchomeronic acid, its metal complexes and their supramolecular architectures: experimental, CSD survey, solution and theoretical approaches. RSC Adv 9:25382–25404. https://doi.org/10.1039/C9RA05143K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Frisch GMJ, Trucks GW, Schlegel HB, Scuseria GE, Robb JRC MA (2009) Gaussian 09

  29. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  30. Jurečka P, Černý J, Hobza P, Salahub DR (2007) Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations. J Comput Chem 28:555–569. https://doi.org/10.1002/jcc.20570

    Article  CAS  PubMed  Google Scholar 

  31. Boys SF, Bernardi F (2002) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 100:65–73. https://doi.org/10.1080/00268970110088901

    Article  Google Scholar 

  32. Keith TA (2011) AIMAll (Version 11.05.16)

  33. Chahkandi M, Aliabad HAR (2019) Crystalline network form of Gefitinib molecule stabilized by non–covalent interactions: DFT–D calculations. Chem Phys 525:110418. https://doi.org/10.1016/j.chemphys.2019.110418

    Article  CAS  Google Scholar 

  34. Chahkandi M, Keivanloo Shahrestanaki A, Mirzaei M et al (2012) Comprehensive studies of non-covalent interactions within four new Cu(ii) supramolecules. CrystEngComm 14:8468. https://doi.org/10.1039/c2ce26442k

    Article  CAS  Google Scholar 

  35. Chahkandi M, Bhatti MH, Yunus U et al (2017) Synthesis and comprehensive structural studies of a novel amide based carboxylic acid derivative: non–covalent interactions. J Mol Struct. https://doi.org/10.1016/j.molstruc.2016.12.045

    Article  Google Scholar 

  36. Aliabad HAR, Chahkandi M (2019) Theoretical study of crystalline network and optoelectronic properties of erlotinib hydrochloride molecule: non-covalent interactions consideration. Chem Pap. https://doi.org/10.1007/s11696-018-0607-3

    Article  Google Scholar 

  37. Rahmati Z, Mirzaei M, Chahkandi M, Mague JT (2018) Accurate DFT studies on crystalline network formation of a new Co(II) complex bearing 8-aminoquinoline. Inorg Chim Acta. https://doi.org/10.1016/j.ica.2017.12.033

    Article  Google Scholar 

  38. Yunus U, Ahmed S, Chahkandi M et al (2017) Synthesis and theoretical studies of non-covalent interactions within a newly synthesized chiral 1,2,4-triazolo[3,4-b][1,3,4]thiadiazine. J Mol Struct 1130:688–698. https://doi.org/10.1016/j.molstruc.2016.11.014

    Article  CAS  Google Scholar 

  39. Seth SK, Saha I, Estarellas C et al (2011) Supramolecular self-assembly of M-IDA complexes involving lone-pair···π interactions: crystal structures, Hirshfeld surface analysis, and DFT calculations [H 2 IDA = iminodiacetic acid, M = Cu(II), Ni(II)]. Cryst Growth Des 11:3250–3265. https://doi.org/10.1021/cg200506q

    Article  CAS  Google Scholar 

  40. Goerigk L (2017) A comprehensive overview of the DFT-D3 London-dispersion correction. In: Non-covalent interactions in quantum chemistry and physics, 1st edn. Elsevier, pp 195–219

  41. Chattopadhyay B, Mukherjee AK, Narendra N et al (2010) Supramolecular architectures in 5,5′-substituted hydantoins: crystal structures and Hirshfeld surface analyses. Cryst Growth Des 10:4476–4484. https://doi.org/10.1021/cg100706n

    Article  CAS  Google Scholar 

  42. Spek AL (2009) Structure validation in chemical crystallography. Acta Crystallogr Sect D Biol Crystallogr 65:148–155. https://doi.org/10.1107/S090744490804362X

    Article  CAS  Google Scholar 

  43. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928. https://doi.org/10.1021/cr00005a013

    Article  CAS  Google Scholar 

  44. Matta CF, Bader RFW (2003) Atoms-in-molecules study of the genetically encoded amino acids. III. Bond and atomic properties and their correlations with experiment including mutation-induced changes in protein stability and genetic coding. Proteins Struct Funct Genet 52:360–399. https://doi.org/10.1002/prot.10414

    Article  CAS  PubMed  Google Scholar 

  45. Koch U, Popelier PLA (1995) Characterization of C-H-O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754. https://doi.org/10.1021/j100024a016

    Article  CAS  Google Scholar 

  46. Shainyan BA, Chipanina NN, Aksamentova TN et al (2010) Intramolecular hydrogen bonds in the sulfonamide derivatives of oxamide, dithiooxamide, and biuret. FT-IR and DFT study, AIM and NBO analysis. Tetrahedron 66:8551–8556. https://doi.org/10.1016/j.tet.2010.08.076

    Article  CAS  Google Scholar 

  47. Bohórquez HJ, Boyd RJ, Matta CF (2011) Molecular model with quantum mechanical bonding information. J Phys Chem A 115:12991–12997. https://doi.org/10.1021/jp204100z

    Article  CAS  PubMed  Google Scholar 

  48. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173. https://doi.org/10.1016/S0009-2614(98)00036-0

    Article  CAS  Google Scholar 

  49. Vener MV, Egorova AN, Churakov AV, Tsirelson VG (2012) Intermolecular hydrogen bond energies in crystals evaluated using electron density properties: DFT computations with periodic boundary conditions. J Comput Chem 33:2303–2309. https://doi.org/10.1002/jcc.23062

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.C. gratefully appreciates the financial support by the Hakim Sabzevari University, Sabzevar, Iran, for the cluster center and stand data used in the herein reported calculations.

Author information

Authors and Affiliations

Authors

Contributions

Nahid Sadat Zargar involved in funding acquisition, methodology, validation, writing. Mohammad Chahkandi took part in supervision, conceptualization, validation, project administration, writing–review and editing. Mandana Sabertehrani took part in conceptualization, writing–review and editing. Behzad Chahkandi involved in visualization, data curation, analysis, investigation.

Corresponding author

Correspondence to Mohammad Chahkandi.

Ethics declarations

Conflict of interest

We have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2503 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zargar, N.S., Chahkandi, M., Sabertehrani, M. et al. Non-covalent interactions constructor of 3D networks of Co (II) and Cu (II) complexes with pyridine ligands: systematic theoretical and experimental survey. Theor Chem Acc 143, 46 (2024). https://doi.org/10.1007/s00214-024-03119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-024-03119-8

Keywords

Navigation