Skip to main content
Log in

Formation of alkoxymethyl hydroperoxides and alkyl formates from simplest Criegee intermediate (CH2OO) + ROH (R=CH3, CH3CH2, and (CH3)2CH) reaction systems

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Gas-phase reactions involving simplest Criegee intermediate (CH2OO) have been the current hot topic due to its vital role in atmospheric chemistry. In this study, high-level ab initio calculations are used to investigate the energetics and kinetics for the reaction of CH2OO + ROH → ROCHO + H2O (R=CH3, CH3CH2 and (CH3)2CH). Energies of the stationary points are computed at the CCSD(T)/M06-2X/6-311++G(3d,3pd)//M06-2X/6-311++G(3d,3pd) level of theory. Reaction is going through a 1,2-addition and water elimination step leading to the formation of alkoxymethyl hydroperoxides and alkyl formates, respectively. The barrier heights for the 1,2-addition step with methanol, ethanol, and isopropanol were found to be − 3.1, − 3.7, and − 4.8 kcal mol−1, and water elimination steps were found to be 2.2, 1.5, and 1.6 kcal mol−1, respectively, relative to the energies of the starting reactants. The rate constants for addition and elimination channels were calculated using canonical variational transition state theory in conjugation with small-curvature tunneling and the interpolated single point energy method between the temperature range of 200 and 500 K. In addition, the thermochemistry analysis indicates that addition and elimination channels are thermodynamically feasible and the formation of alkyl formates is entropically more favored when compared to the formation of alkoxymethyl hydroperoxide along the reaction path in the potential energy surface. The pressure-dependent microcanonical rate constants for both addition and elimination channels were also estimated using the Rice–Ramsperger–Kassel–Marcus theory and discussed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data obtained through this computation are tabulated in Supporting Information.

References

  1. Goldan PD, Kuster WC, Fehsenfeld FC, Montzka SA (1993) The observation of a C5 alcohol emission in a North American pine forest. Geophys Res Lett 20:1039–1042

    Article  CAS  Google Scholar 

  2. Stavrakou T, Guenther A, Razavi A et al (2011) First space-based derivation of the global atmospheric methanol emission fluxes. Atmos Chem Phys 11:4873–4898. https://doi.org/10.5194/acp-11-4873-2011

    Article  CAS  Google Scholar 

  3. Grosjean E, Grosjean D, Gunawardena R, Rasmussen RA (1998) Ambient concentrations of ethanol and methyl tert-butyl ether in Porto Alegre, Brazil, March 1996–April 1997. Environ Sci Technol 32:736–742. https://doi.org/10.1021/es970788u

    Article  CAS  Google Scholar 

  4. Grosjean E, Rasmussen RA, Grosjean D (1998) Ambient levels of gas phase pollutants in Porto Alegre, Brazil. Atmos Environ 32:3371–3379. https://doi.org/10.1016/S1352-2310(98)00007-7

    Article  CAS  Google Scholar 

  5. Jacob DJ, Field BD, Li Q et al (2005) Global budget of methanol: constraints from atmospheric observations. J Geophys Res D Atmos 110:1–17. https://doi.org/10.1029/2004JD005172

    Article  CAS  Google Scholar 

  6. Heikes BG, Chang W, Pilson MEQ et al (2002) Atmospheric methanol budget and ocean implication. Glob Biogeochem Cycles. https://doi.org/10.1029/2002gb001895

    Article  Google Scholar 

  7. Sivapuram MS, Nagarathna R, Anand A et al (2020) Prevalence of alcohol and tobacco use in india and implications for COVID-19-Niyantrita Madhumeha Bharata Study projections. J Med Life 13:499–509. https://doi.org/10.25122/jml-2020-0079

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kirstine WV, Galbally IE (2012) ethanol in the environment: a critical review of its roles as a natural product, a biofuel, and a potential environmental pollutant. Crit Rev Environ Sci Technol 42:1735–1779

    Article  CAS  Google Scholar 

  9. Colón M, Pleil JD, Hartlage TA et al (2001) Survey of volatile organic compounds associated with automotive emissions in the urban airshed of São Paulo, Brazil. Atmos Environ 35:4017–4031. https://doi.org/10.1016/S1352-2310(01)00178-9

    Article  Google Scholar 

  10. Nguyen HTH, Takenaka N, Bandow H et al (2001) Atmospheric alcohols and aldehydes concentrations measured in Osaka, Japan and in Sao Paulo, Brazil. Atmos Environ. https://doi.org/10.1016/S1352-2310(01)00136-4

    Article  Google Scholar 

  11. König G, Brunda M, Puxbaum H et al (1995) Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species. Atmos Environ 29:861–874. https://doi.org/10.1016/1352-2310(95)00026-U

    Article  Google Scholar 

  12. Docherty KS, Ziemann PJ (2003) effects of stabilized criegee intermediate and OH radical scavengers on aerosol formation from reactions of β-pinene with O3. Aerosol Sci Technol 37:877–891. https://doi.org/10.1080/02786820300930

    Article  CAS  Google Scholar 

  13. Wolff S, Boddenberg A, Thamm J et al (1997) Gas-phase ozonolysis of ethene in the presence of carbonyl-oxide scavengers. Atmos Environ 31:2965–2969. https://doi.org/10.1016/S1352-2310(97)00114-3

    Article  CAS  Google Scholar 

  14. Criegee R (1975) Mechanism of ozonolysis. Angew Chem Int Ed Engl 14:745–752. https://doi.org/10.1002/anie.197507451

    Article  Google Scholar 

  15. Johnson D, Marston G (2008) The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere. Chem Soc Rev 37:699–716. https://doi.org/10.1039/b704260b

    Article  CAS  PubMed  Google Scholar 

  16. Taatjes CA, Shallcross DE, Percival CJ (2014) Research frontiers in the chemistry of Criegee intermediates and tropospheric ozonolysis. Phys Chem Chem Phys 16:1704–1718

    Article  CAS  PubMed  Google Scholar 

  17. Calvert JG, Atkinson R, Kerr JA et al (2002) The mechanisms of atmospheric oxidation of the aromatic hydrocarbons

  18. Horie O, Moortgat GK (1998) Gas-phase ozonolysis of alkenes. Recent advances in mechanistic investigations. Acc Chem Res 31:387–396. https://doi.org/10.1021/ar9702740

    Article  CAS  Google Scholar 

  19. Ke L, McGillen MR, Cooke MC et al (2012) Acid-yield measurements of the gas-phase ozonolysis of ethene as a function of humidity using Chemical Ionisation Mass Spectrometry (CIMS). Atmos Chem Phys 12:469–479. https://doi.org/10.5194/acp-12-469-2012

    Article  CAS  Google Scholar 

  20. Welz O, Savee JD, Osborn DL et al (2012) Direct kinetic measurements of criegee intermediate (CH2OO) formed by reaction of CH2I with O2. Science 335:204–207. https://doi.org/10.1126/science.1213229

    Article  CAS  PubMed  Google Scholar 

  21. Liu F, Beames JM, Green AM, Lester MI (2014) UV spectroscopic characterization of dimethyl- and ethyl-substituted carbonyl oxides. J Phys Chem A 118:2298–2306. https://doi.org/10.1021/jp412726z

    Article  CAS  PubMed  Google Scholar 

  22. Beames JM, Liu F, Lu L, Lester MI (2013) UV spectroscopic characterization of an alkyl substituted Criegee intermediate CH3CHOO. J Chem Phys. https://doi.org/10.1063/1.4810865

    Article  PubMed  Google Scholar 

  23. Lin HY, Huang YH, Wang X et al (2015) Infrared identification of the Criegee intermediates syn- and anti-CH3CHOO, and their distinct conformation-dependent reactivity. Nat Commun. https://doi.org/10.1038/ncomms8012

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang YY, Chung CY, Lee YP (2016) Infrared spectral identification of the Criegee intermediate (CH3)2COO. J Chem Phys. https://doi.org/10.1063/1.4964658

    Article  PubMed  PubMed Central  Google Scholar 

  25. Smith MC, Chang CH, Chao W et al (2015) Strong negative temperature dependence of the simplest criegee intermediate CH2OO reaction with water dimer. J Phys Chem Lett 6:2708–2713. https://doi.org/10.1021/acs.jpclett.5b01109

    Article  CAS  PubMed  Google Scholar 

  26. Huang HL, Chao W, Lin JJM (2015) Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2. Proc Natl Acad Sci USA 112:10857–10862. https://doi.org/10.1073/pnas.1513149112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chhantyal-Pun R, Shannon RJ, Tew DP et al (2019) experimental and computational studies of Criegee intermediate reactions with NH3 and CH3NH2. Phys Chem Chem Phys 21:14042–14052. https://doi.org/10.1039/c8cp06810k

    Article  CAS  PubMed  Google Scholar 

  28. Ryzhkov AB, Ariya PA (2004) A theoretical study of the reactions of parent and substituted Criegee intermediates with water and the water dimer. Phys Chem Chem Phys 6:5042–5050. https://doi.org/10.1039/b408414d

    Article  CAS  Google Scholar 

  29. Anglada JM, González J, Torrent-Sucarrat M (2011) Effects of the substituents on the reactivity of carbonyl oxides. A theoretical study on the reaction of substituted carbonyl oxides with water. Phys Chem Chem Phys 13:13034–13045. https://doi.org/10.1039/c1cp20872a

    Article  CAS  PubMed  Google Scholar 

  30. Taatjes CA, Welz O, Eskola AJ et al (2013) Direct measurements of conformer-dependent reactivity of the Criegee intermediate CH3CHOO. Science 340:177–180. https://doi.org/10.1126/science.1234689

    Article  CAS  PubMed  Google Scholar 

  31. Misiewicz JP, Elliott SN, Moore KB, Schaefer HF (2018) Re-examining ammonia addition to the Criegee intermediate: converging to chemical accuracy. Phys Chem Chem Phys 20:7479–7491. https://doi.org/10.1039/c7cp08582f

    Article  CAS  PubMed  Google Scholar 

  32. Jørgensen S, Gross A (2009) Theoretical investigation of the reaction between carbonyl oxides and ammonia. J Phys Chem A 113:10284–10290. https://doi.org/10.1021/jp905343u

    Article  CAS  PubMed  Google Scholar 

  33. Elsamra RMI, Jalan A, Buras ZJ et al (2016) Temperature- and pressure-dependent kinetics of CH2OO + CH3COCH3 and CH2OO + CH3CHO: Direct measurements and theoretical analysis. Int J Chem Kinet 48:474–488. https://doi.org/10.1002/kin.21007

    Article  CAS  Google Scholar 

  34. Wang YY, Dash MR, Chung CY, Lee YP (2018) Detection of transient infrared absorption of SO3 and 1,3,2-dioxathietane-2,2-dioxide [cyc -(CH2)O(SO2)O] in the reaction CH2OO+SO2. J Chem Phys. https://doi.org/10.1063/1.5019205

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tadayon SV, Foreman ES, Murray C (2018) Kinetics of the reactions between the Criegee intermediate CH2OO and alcohols. J Phys Chem A 122:258–268. https://doi.org/10.1021/acs.jpca.7b09773

    Article  CAS  PubMed  Google Scholar 

  36. McGillen MR, Curchod BFE, Chhantyal-Pun R et al (2017) Criegee intermediate-alcohol reactions, a potential source of functionalized hydroperoxides in the atmosphere. ACS Earth Space Chem 1:664–672. https://doi.org/10.1021/acsearthspacechem.7b00108

    Article  CAS  Google Scholar 

  37. Lin LC, Chang HT, Chang CH et al (2016) Competition between H2O and (H2O)2 reactions with CH2OO/CH3CHOO. Phys Chem Chem Phys 18:4557–4568. https://doi.org/10.1039/c5cp06446e

    Article  CAS  PubMed  Google Scholar 

  38. Watson NAI, Black JA, Stonelake TM et al (2019) An extended computational study of Criegee intermediate-alcohol reactions. J Phys Chem A 123:218–229. https://doi.org/10.1021/acs.jpca.8b09349

    Article  CAS  PubMed  Google Scholar 

  39. Aroeira GJR, Abbott AS, Elliott SN et al (2019) The addition of methanol to Criegee intermediates. Phys Chem Chem Phys 21:17760–17771. https://doi.org/10.1039/c9cp03480c

    Article  CAS  PubMed  Google Scholar 

  40. Chao W, Hsieh JT, Chang CH, Lin JJM (2015) Direct kinetic measurement of the reaction of the simplest criegee intermediate with water vapor. Science 347:751–754. https://doi.org/10.1126/science.1261549

    Article  CAS  PubMed  Google Scholar 

  41. Chhantyal-Pun R, Davey A, De S et al (2015) A kinetic study of the CH2OO Criegee intermediate self-reaction, reaction with SO2 and unimolecular reaction using cavity ring-down spectroscopy. Phys Chem Chem Phys 17:3617–3626. https://doi.org/10.1039/c4cp04198d

    Article  CAS  PubMed  Google Scholar 

  42. Novelli A, Hens K, Ernest CT et al (2017) estimating the atmospheric concentration of Criegee intermediates and their possible interference in a FAGe-LIF instrument. Atmos Chem Phys 17:7807–7826. https://doi.org/10.5194/acp-17-7807-2017

    Article  CAS  Google Scholar 

  43. Berndt T, Jokinen T, Sipilä M et al (2014) H2SO4 formation from the gas-phase reaction of stabilized Criegee Intermediates with SO2: influence of water vapour content and temperature. Atmos Environ 89:603–612. https://doi.org/10.1016/j.atmosenv.2014.02.062

    Article  CAS  Google Scholar 

  44. Mauldin RL, Berndt T, Sipilä M et al (2012) A new atmospherically relevant oxidant of sulphur dioxide. Nature 488:193–196. https://doi.org/10.1038/nature11278

    Article  CAS  PubMed  Google Scholar 

  45. Welz O, Eskola AJ, Sheps L et al (2014) Rate coefficients of C1 and C2 criegee intermediate reactions with formic and acetic acid near the collision limit: direct kinetics measurements and atmospheric implications. Angew Chemie Int ed 53:4547–4550. https://doi.org/10.1002/anie.201400964

    Article  CAS  Google Scholar 

  46. Vereecken L, Harder H, Novelli A (2012) The reaction of Criegee intermediates with NO, RO2, and SO2, and their fate in the atmosphere. Phys Chem Chem Phys 14:14682–14695. https://doi.org/10.1039/c2cp42300f

    Article  CAS  PubMed  Google Scholar 

  47. Chhantyal-Pun R, McGillen MR, Beames JM et al (2017) Temperature-dependence of the rates of reaction of trifluoroacetic acid with criegee intermediates. Angew Chemie Int ed 56:9044–9047. https://doi.org/10.1002/anie.201703700

    Article  CAS  Google Scholar 

  48. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06 functionals and 12 other functionals (T. Theor Chem Acc 119:525

    Article  CAS  Google Scholar 

  49. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157–167. https://doi.org/10.1021/ar700111a

    Article  CAS  PubMed  Google Scholar 

  50. Dash MR, Muthiah B, Mishra SS et al (2021) Kinetic insights into ethynyl radical with isobutane and neopentane. Theor Chem Acc 140:1–9. https://doi.org/10.1007/s00214-021-02833-x

    Article  CAS  Google Scholar 

  51. Arathala P, Musah RA (2022) Theoretical study of the atmospheric chemistry of methane sulfonamide initiated by OH radicals and the CH3S(O)2N•H + 3O2 reaction. J Phys Chem A 126:9447–9460. https://doi.org/10.1021/acs.jpca.2c06432

    Article  CAS  PubMed  Google Scholar 

  52. Ali MA, Dash MR, Al Maieli LM (2022) Catalytic effect of CO2 and H2O Molecules on • CH3 +3O2 Reaction. Catalysts. https://doi.org/10.3390/catal12070699

    Article  Google Scholar 

  53. Lily M, Baidya B, Wang W et al (2020) Atmospheric chemistry of CHF2CF2OCH2CF3: reactions with Cl atoms, fate of CHF2CF2OC•HCF3 radical, formation of OH radical and Criegee Intermediate. Atmos Environ 242:117805. https://doi.org/10.1016/j.atmosenv.2020.117805

    Article  CAS  Google Scholar 

  54. Liu B, Zhou Z, Zhang Z, Ning H (2022) Theoretical study on abstraction and addition reaction kinetics for a medium-size unsaturated methyl ester: methyl-3-hexenoate + H/OH radicals. J Phys Chem A 126:9461–9474. https://doi.org/10.1021/acs.jpca.2c06249

    Article  CAS  PubMed  Google Scholar 

  55. Balaganesh M, Dash MR, Rajakumar B (2014) Experimental and computational investigation on the gas phase reaction of ethyl formate with Cl atoms. J Phys Chem A 118:5272–5278. https://doi.org/10.1021/jp502963w

    Article  CAS  PubMed  Google Scholar 

  56. Dash MR, Balaganesh M, Rajakumar B (2014) Rate coefficients for the gas-phase reaction of OH radical with α-pinene: an experimental and computational study. Mol Phys 112:1495–1511. https://doi.org/10.1080/00268976.2013.840395

    Article  CAS  Google Scholar 

  57. Dash MR, Rajakumar B (2015) Abstraction and addition kinetics of C2H radicals with CH4, C2H6, C3H8, C2H4, and C3H6: CVT/SCT/ISPe and hybrid meta-DFT methods. Phys Chem Chem Phys 17:3142–3156. https://doi.org/10.1039/c4cp04677c

    Article  CAS  PubMed  Google Scholar 

  58. Dash MR, Mishra SS (2022) Mechanistic and kinetic approach on methyl isocyanate (CH3NCO) with OH and Cl. Mol Phys. https://doi.org/10.1080/00268976.2022.2124933

    Article  Google Scholar 

  59. Dash MR, Mishra SS (2021) Theoretical kinetic studies of ethynyl radical with n-butane. J Phys Org Chem 34:1–8. https://doi.org/10.1002/poc.4249

    Article  CAS  Google Scholar 

  60. Dash MR, Rajakumar B (2013) experimental and theoretical rate coefficients for the gas phase reaction of β-Pinene with OH radical. Atmos Environ 79:161–171. https://doi.org/10.1016/j.atmosenv.2013.05.039

    Article  CAS  Google Scholar 

  61. Noga J, Bartlett RJ (1986) The full CCSDT model for molecular electronic structure. J Chem Phys 86:7041–7050. https://doi.org/10.1063/1.452353

    Article  Google Scholar 

  62. Rienstra-Kiracofe JC, Allen WD, Schaefer HF (2000) C2H5+O2 reaction mechanism: high-level ab initio characterizations. J Phys Chem A 104:9823–9840. https://doi.org/10.1021/jp001041k

    Article  CAS  Google Scholar 

  63. Galano A, Muñoz-Rugeles L, Alvarez-Idaboy JR et al (2016) Hydrogen abstraction reactions from phenolic compounds by peroxyl radicals: multireference character and density functional theory rate constants. J Phys Chem A 120:4634–4642. https://doi.org/10.1021/acs.jpca.5b07662

    Article  CAS  PubMed  Google Scholar 

  64. Bai FY, Zhu XL, Jia ZM et al (2015) Theoretical studies of the reactions CFxH3−xCOOR+Cl and CF3COOCH3+OH. ChemPhysChem 16:1768–1776. https://doi.org/10.1002/cphc.201402799

    Article  CAS  PubMed  Google Scholar 

  65. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision B.01. Gaussian 09, Revis. B.01. Gaussian Inc., Wallingford

  66. Garrett BC, Truhlar DG (1979) Generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules. J Phys Chem 83:1052–1079. https://doi.org/10.1021/j100471a031

    Article  CAS  Google Scholar 

  67. Garrett BC, Truhlar DG, Grev RS, Magnuson AW (1980) Improved treatment of threshold contributions in variational transition-state theory. J Phys Chem 84:1730–1748. https://doi.org/10.1021/j100450a013

    Article  CAS  Google Scholar 

  68. Gonzalez-Lafont A, Truong TN, Truhlar DG (1991) Interpolated variational transition-state theory: practical methods for estimating variational transition-state properties and tunneling contributions to chemical reaction rates from electronic structure calculations. J Chem Phys 95:8875–8894. https://doi.org/10.1063/1.461221

    Article  CAS  Google Scholar 

  69. Lu DH, Truong TN, Melissas VS et al (1992) POLYRATe 4: a new version of a computer program for the calculation of chemical reaction rates for polyatomics. Comput Phys Commun 71:235–262. https://doi.org/10.1016/0010-4655(92)90012-N

    Article  CAS  Google Scholar 

  70. Liu YP, Lynch GC, Truong TN et al (1993) Molecular modeling of the kinetic isotope effect for the [1,5] sigmatropic rearrangement of cis-1,3-pentadiene. J Am Chem Soc 115:2408–2415. https://doi.org/10.1021/ja00059a041

    Article  CAS  Google Scholar 

  71. Chuang YY, Corchado JC, Truhlar DG (1999) Mapped interpolation scheme for single-point energy corrections in reaction rate calculations and a critical evaluation of dual-level reaction path dynamics methods. J Phys Chem A 103:1140–1149. https://doi.org/10.1021/jp9842493

    Article  CAS  Google Scholar 

  72. Canneaux S, Bohr F, Henon E (2014) KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results. J Comput Chem 35:82–93. https://doi.org/10.1002/jcc.23470

    Article  CAS  PubMed  Google Scholar 

  73. Wei WM, Yang X, Zheng RH et al (2015) Theoretical studies on the reactions of the simplest Criegee intermediate CH2OO with CH3CHO. Comput Theor Chem 1074:142–149. https://doi.org/10.1016/j.comptc.2015.10.013

    Article  CAS  Google Scholar 

  74. Kaipara R, Rajakumar B (2018) Temperature-dependent kinetics of the reaction of a criegee intermediate with propionaldehyde: a computational investigation. J Phys Chem A 122:8433–8445. https://doi.org/10.1021/acs.jpca.8b06603

    Article  CAS  PubMed  Google Scholar 

  75. Crehuet R, Anglada JM, Cremer D, Bofill JM (2002) Reaction modes of carbonyl oxide, dioxirane, and methylenebis(oxy) with ethylene: a new reaction mechanism. J Phys Chem A 106:3917–3929. https://doi.org/10.1021/jp0142031

    Article  CAS  Google Scholar 

  76. Dash MR, Srinivasulu G, Rajakumar B (2015) Experimental and computational investigation on the gas phase reaction of p-cymene with Cl atoms. J Phys Chem A 119:559–570. https://doi.org/10.1021/jp509800g

    Article  CAS  PubMed  Google Scholar 

  77. Zheng J, Zhang S, Lynch BJ, Corchado JC, Chuang YY, Hu WPY, Liu P, Lynch GC, Nguyen KA, Jackels CFR, Ellingson BA, Melissas VS, Villà J, Rossi CEL, Pu J, Albu TV, Steckler R, Garrett BC, IADTDG (2008) POLYRATE, version 2008. University of Minnesota, Minneapolis

  78. Zheng J, Zhang S, Corchado JC, Chuang Y-Y, Coitiño EL E, BA TD (2010) GAUSSRATE, version 2009-A University of Minnesota, Minneapolis

  79. Jalan A, Allen JW, Green WH (2013) Chemically activated formation of organic acids in reactions of the Criegee intermediate with aldehydes and ketones. Phys Chem Chem Phys. https://doi.org/10.1039/c3cp52598h

    Article  PubMed  Google Scholar 

  80. Hippler H, Troe J, Wendelken HJ (1983) Collisional deactivation of vibrationally highly excited polyatomic molecules. II. Direct observations for excited toluene. J Chem Phys 78:6709–6717. https://doi.org/10.1063/1.444670

    Article  CAS  Google Scholar 

  81. Saheb V (2021) Detailed theoretical kinetics studies on the product formation from the reaction of the criegee intermediate CH2OO with H2O molecule. Theor Chem Acc. https://doi.org/10.1007/s00214-021-02779-0

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Department of Chemistry, National Taiwan University, Taipei, Taiwan, for providing computer facilities. This work was supported through the seed funding grant by the Dean Research & consultancy of DIT University, Dehradun, India [Project No. DITU/R & D/2022/015/Chemistry]. The authors thank Professor Donald G. Truhlar and his group for providing the POLYRATE 2008 and GAUSSRATE 2009A programs.

Author information

Authors and Affiliations

Authors

Contributions

MRD and BM completed all the electronic structure calculations, and BM completed the chemical kinetic calculations. MRD and SSM did all the analysis and interpretation of data. MRD and SSM prepared the draft of the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Manas Ranjan Dash.

Ethics declarations

Conflict of interest

No potential conflict of interest was stated by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3994 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, M.R., Muthiah, B. & Mishra, S.S. Formation of alkoxymethyl hydroperoxides and alkyl formates from simplest Criegee intermediate (CH2OO) + ROH (R=CH3, CH3CH2, and (CH3)2CH) reaction systems. Theor Chem Acc 143, 29 (2024). https://doi.org/10.1007/s00214-024-03104-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-024-03104-1

Keywords

Navigation