Skip to main content
Log in

Exploring unimolecular reactions in disilanol and ethanol: Insights and challenges

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Previous methods for mechanism discovery have largely been done by manual exploration using chemical intuition. The present work is a first attempt to use the automated mechanism discovery of the program AutoMeKin to elucidate the unimolecular reactions of disilanol, Si2OH6. The semiempirical surfaces computed in the present study insufficiently describe silicon chemistry. As a workaround, we implement an intermediate optimization step to temper these shortcomings. The method recovers the known mechanisms in SiOH4 and C2OH6, which we use for validation. Key results for Si2OH6 include descriptions of relevant elementary reactions, the reaction network, and comparisons with better-known hydrocarbon and silicon hydride reactions. Although the current method shows promise, some shortcomings arise. We discuss the reliability of the generated reaction network and address approaches for further mechanistic understanding of silicon chemistry for material synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Grajales-González E, Kukkadapu G, Nagaraja SS et al (2022) An experimental and kinetic modeling study of the pyrolysis of isoprene, a significant biogenic hydrocarbon in naturally occurring vegetation fires. Combust Flame 242:112206. https://doi.org/10.1016/j.combustflame.2022.112206

    Article  CAS  Google Scholar 

  2. Sivaramakrishnan R, Michael JV, Wagner AF et al (2011) Roaming radicals in the thermal decomposition of dimethyl ether: Experiment and theory. Combust Flame 158:618–632. https://doi.org/10.1016/j.combustflame.2010.12.017

    Article  CAS  Google Scholar 

  3. Martínez-Núñez E (2015) An automated method to find transition states using chemical dynamics simulations. J Comput Chem 36:222–234. https://doi.org/10.1002/jcc.23790

    Article  CAS  PubMed  Google Scholar 

  4. Martínez-Núñez E, Barnes GL, Glowacki DR et al (2021) AutoMeKin2021: an open-source program for automated reaction discovery. J Comput Chem 42:2036–2048. https://doi.org/10.1002/jcc.26734

    Article  CAS  PubMed  Google Scholar 

  5. Maier G, Reisenauer H, Glatthaar J (2002) Reactions of silicon atoms with methane and silane in solid argon a matrix-spectroscopic study. Chem A Eur J 8:4383–4391

    Article  CAS  Google Scholar 

  6. Martín-Fernández C, Alkorta I, Montero-Campillo MM, Elguero J (2022) Stand up for Electrostatics: The Disiloxane Case. ChemPhysChem. https://doi.org/10.1002/cphc.202200088

    Article  PubMed  Google Scholar 

  7. Raghavachari K, Chandrasekhar J, Frisch MJ (1982) Ab initio study of silylene insertion into oxygen-hydrogen bonds. Stability of zwitterionic intermediates. J Am Chem Soc 104:3779–3781. https://doi.org/10.1021/ja00377a065

    Article  CAS  Google Scholar 

  8. Raghavachari K, Chandrasekhar J, Gordon MS, Dykema K (1984) Theoretical study of silylene insertion into nitrogen-hydrogen, oxygen-hydrogen, fluorine-hydrogen, phosphorus-hydrogen, sulfur-hydrogen, and chlorine-hydrogen bonds. J Am Chem Soc 106:5853–5859. https://doi.org/10.1021/ja00332a016

    Article  CAS  Google Scholar 

  9. Gordon MS, Pederson LA (1990) Thermal decomposition processes for silanol. J Phys Chem 94:5527–5530. https://doi.org/10.1021/j100377a022

    Article  CAS  Google Scholar 

  10. Zachariah MR, Tsang W (1995) Theoretical calculation of thermochemistry, energetics, and kinetics of high-temperature SixHyOz reactions. J Phys Chem 99:5308–5318. https://doi.org/10.1021/j100015a012

    Article  CAS  Google Scholar 

  11. Lin JJ, Lee YT, Yang X (2000) Multiple dynamical pathways in the O+SiH4 reaction studied by the crossed molecular beam method. J Chem Phys 113:1831–1842. https://doi.org/10.1063/1.481987

    Article  CAS  Google Scholar 

  12. Nguyen TL, Mebel AM, Lin SH (2001) The role of the ground and excited potential energy surfaces in the O(1D and 3P)+SiH4 reactions: a theoretical study. J Chem Phys 114:10816–10834. https://doi.org/10.1063/1.1370528

    Article  CAS  Google Scholar 

  13. Becerra R, Cannady JP, Walsh R (2003) Investigation of the prototype silylene reaction, SiH2 + H2O (and D2O): time-resolved gas-phase kinetic studies, isotope effects, RRKM calculations, and quantum chemical calculations of the reaction energy surface. J Phys Chem A 107:11049–11056. https://doi.org/10.1021/jp036431w

    Article  CAS  Google Scholar 

  14. Ghosh S, Mandal M, Maiti B (2017) Dynamics of the O(3P, 1D) + SiH4 reaction: a trajectory surface hopping study. Chem Phys Lett 690:54–61. https://doi.org/10.1016/j.cplett.2017.10.040

    Article  CAS  Google Scholar 

  15. Li J, Kazakov A, Dryer FL (2004) Experimental and numerical studies of ethanol decomposition reactions. J Phys Chem A 108:7671–7680. https://doi.org/10.1021/jp0480302

    Article  CAS  Google Scholar 

  16. Stagni A, Schmitt S, Pelucchi M et al (2022) Dimethyl ether oxidation analyzed in a given flow reactor: experimental and modeling uncertainties. Combust Flame 240:111998. https://doi.org/10.1016/j.combustflame.2022.111998

    Article  CAS  Google Scholar 

  17. Lizardo-Huerta J-C, Sirjean B, Glaude P-A, Fournet R (2017) Pericyclic reactions in ether biofuels. Proc Combust Inst 36:569–576. https://doi.org/10.1016/j.proci.2016.07.035

    Article  CAS  Google Scholar 

  18. Johnson MS, Grinberg Dana A, Green WH (2022) A workflow for automatic generation and efficient refinement of individual pressure-dependent networks. Combust Flame. https://doi.org/10.1016/j.combustflame.2022.112516

    Article  Google Scholar 

  19. Butkovskaya NI, Zhao Y, Setser DW (1994) Decomposition of chemically activated ethanol. J Phys Chem 98:10779–10786. https://doi.org/10.1021/j100093a018

    Article  CAS  Google Scholar 

  20. Xu ZF, Xu K, Lin MC (2011) Thermal decomposition of ethanol. 4. ab initio chemical kinetics for reactions of H atoms with CH3CH2O and CH 3CHOH radicals. J Phys Chem A 115:3509–3522. https://doi.org/10.1021/jp110580r

    Article  CAS  PubMed  Google Scholar 

  21. Sivaramakrishnan R, Su M-C, Michael JV et al (2010) Rate constants for the thermal decomposition of ethanol and its bimolecular reactions with oh and d: reflected shock tube and theoretical studies. J Phys Chem A 114:9425–9439. https://doi.org/10.1021/jp104759d

    Article  CAS  PubMed  Google Scholar 

  22. Park J, Zhu RS, Lin MC (2002) Thermal decomposition of ethanol. I. Ab Initio molecular orbital/Rice–Ramsperger–Kassel–Marcus prediction of rate constant and product branching ratios. J Chem Phys 117:3224–3231. https://doi.org/10.1063/1.1490601

    Article  CAS  Google Scholar 

  23. Tachibana A, Sakata K (1997) Quantum chemical study on low energy reaction path for SiH4 + O(1D) → SiO + 2H2. Appl Surf Sci 117–118:151–157. https://doi.org/10.1016/S0169-4332(97)80070-0

    Article  Google Scholar 

  24. Stewart JJP (2016) MOPAC2016

  25. Grimme S, Bannwarth C, Shushkov P (2017) A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies and noncovalent interactions of large molecular systems parametrized all all spd-block elements (Z=1-86). J Chem Theory Comput 13:1989–2009. https://doi.org/10.1021/acs.jctc.7b00118

    Article  CAS  PubMed  Google Scholar 

  26. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  27. Becke AD (1992) Density-functional thermochemistry. I. the effect of the exchange-only gradient correction. J Chem Phys 96:2155–2160. https://doi.org/10.1063/1.462066

    Article  CAS  Google Scholar 

  28. Becke AD (1993) Density-functional thermochemistry. III. the role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  29. Martínez-Núñez E (2015) An automated transition state search using classical trajectories initialized at multiple minima. Phys Chem Chem Phys 17:14912–14921. https://doi.org/10.1039/C5CP02175H

    Article  CAS  PubMed  Google Scholar 

  30. Garay-Ruiz D, Álvarez-Moreno M, Bo C, Martínez-Núñez E (2022) New tools for taming complex reaction networks: the unimolecular decomposition of indole revisited. ACS Phys Chem Au 2:225–236. https://doi.org/10.1021/acsphyschemau.1c00051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garay-Ruiz D (2021) Visualization tools for AutoMeKin

  32. Ferro-Costas D, Martínez-Núñez E, Rodríguez-Otero J et al (2018) Influence of multiple conformations and paths on rate constants and product branching ratios. thermal decomposition of 1-propanol radicals. J Phys Chem A 122:4790–4800. https://doi.org/10.1021/acs.jpca.8b02949

    Article  CAS  PubMed  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, et al (2016) Gaussian 09

  34. Adamczyk AJ, Reyniers M-F, Marin GB, Broadbelt LJ (2010) Kinetic correlations for H2 addition and elimination reaction mechanisms during silicon hydride pyrolysis. Phys Chem Chem Phys 12:12676. https://doi.org/10.1039/c0cp00666a

    Article  CAS  PubMed  Google Scholar 

  35. Adamczyk AJ, Reyniers M-F, Marin GB, Broadbelt LJ (2010) Kinetics of substituted silylene addition and elimination in silicon nanocluster growth captured by group additivity. Chem Eur J of Chem Phys 11:1978–1994. https://doi.org/10.1002/cphc.200900836

    Article  CAS  Google Scholar 

  36. Becerra R, Walsh R (2007) What have we learnt about heavy carbenes through laser flash photolysis studies? Phys Chem Chem Phys 9:2817. https://doi.org/10.1039/b617844h

    Article  CAS  PubMed  Google Scholar 

  37. Raghunath P, Lee Y-M, Wu S-Y et al (2013) Ab initio chemical kinetics for reactions of H atoms with SiH x ( x = 1–3) radicals and related unimolecular decomposition processes. Int J Quantum Chem 113:1735–1746. https://doi.org/10.1002/qua.24396

    Article  CAS  Google Scholar 

  38. Adamczyk AJ, Reyniers M-F, Marin GB, Broadbelt LJ (2009) Exploring 1,2-hydrogen shift in silicon nanoparticles: reaction kinetics from quantum chemical calculations and derivation of transition state group additivity database. J Phys Chem A 113:10933–10946. https://doi.org/10.1021/jp9062516

    Article  CAS  PubMed  Google Scholar 

  39. Irle S, Morokuma K (2000) A molecular orbital study on H and H2 elimination pathways from methane, ethane, and propane. J Chem Phys 113:6139–6148. https://doi.org/10.1063/1.1308555

    Article  CAS  Google Scholar 

  40. Jasper AW, Klippenstein SJ, Harding LB, Ruscic B (2007) Kinetics of the reaction of methyl radical with hydroxyl radical and methanol decomposition. J Phys Chem A 111:3932–3950. https://doi.org/10.1021/jp067585p

    Article  CAS  PubMed  Google Scholar 

  41. Schreiner PR, Reisenauer HP, Ley D et al (2011) Methylhydroxycarbene: tunneling control of a chemical reaction. Science 332:1300–1303. https://doi.org/10.1126/science.1203761

    Article  CAS  PubMed  Google Scholar 

  42. Wesdemiotis C, McLafferty FW (1987) Hydroxyethylidene (CH3-C-OH), but not ethenol, tautomerizes to ethanol. J Am Chem Soc 109:4760–4761. https://doi.org/10.1021/ja00249a071

    Article  CAS  Google Scholar 

  43. Vandeputte AG, Harding LB, Georgievskii Y, Klippenstein SJ Roaming radical kinetics in the pyrolysis and combustion of ethanol. 8th U S National Combustion Meeting Paper 070RK-157

  44. Withnall R, Andrews L (1988) Matrix reactions of methylsilanes and oxygen atoms. J Phys Chem 92:594–602. https://doi.org/10.1021/j100314a006

    Article  CAS  Google Scholar 

  45. Zhang Q, Wang S, Zhou J, Gu Y (2002) Ab initio and kinetic calculation for the abstraction reaction of atomic O(3P) with Si2H6. Chem Phys Lett 354:291–297. https://doi.org/10.1016/S0009-2614(02)00118-5

    Article  CAS  Google Scholar 

  46. Matsumoto K, Klippenstein SJ, Tonokura K, Koshi M (2005) Channel specific rate constants relevant to the thermal decomposition of disilane. J Phys Chem A 109:4911–4920. https://doi.org/10.1021/jp044121n

    Article  CAS  PubMed  Google Scholar 

  47. Hidding B, Pfitzner M, Simone D, Bruno C (2008) Review of the potential of silanes as rocket/scramjet fuels. Acta Astronaut 63:379–388. https://doi.org/10.1016/j.actaastro.2007.12.056

    Article  CAS  Google Scholar 

  48. Choi CH, Liu D-J, Evans JW, Gordon MS (2002) Passive and active oxidation of Si(100) by atomic oxygen: a theoretical study of possible reaction mechanisms. J Am Chem Soc 124:8730–8740. https://doi.org/10.1021/ja012454h

    Article  CAS  PubMed  Google Scholar 

  49. Lai SY, Mæhlen JP, Preston TJ et al (2020) Morphology engineering of silicon nanoparticles for better performance in Li-ion battery anodes. Nanoscale Adv 2:5335–5342. https://doi.org/10.1039/D0NA00770F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee S, Kang J, Kim D (2018) A mini review: recent advances in surface modification of porous silicon. Materials 11:2557. https://doi.org/10.3390/ma11122557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

SAV and EM-N acknowledge the financial support from Ministerio de Ciencia e Innovación (grant number PID2019-107307RB-100) and Xunta de Galicia (grant number ED431C 2021/40).

Funding

Partial financial support was received from Ministerio de Ciencia e Innovación (grant number PID2019-107307RB-100) and Xunta de Galicia (grant number ED431C 2021/40).

Author information

Authors and Affiliations

Authors

Contributions

TJP performed the calculations. SAV, EM-N and TJP wrote the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Emilio Martínez-Núñez or Thomas J. Preston.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 138 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez, S.A., Martínez-Núñez, E. & Preston, T.J. Exploring unimolecular reactions in disilanol and ethanol: Insights and challenges. Theor Chem Acc 142, 124 (2023). https://doi.org/10.1007/s00214-023-03062-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-03062-0

Keywords

Navigation