Skip to main content
Log in

Adsorption studies of air pollutants on α-SbP with density functional theory

  • Correspondence
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The sensing behaviors of monolayer antimonide phosphorus (SbP) for air pollutants (CO, CO2, H2S, SO2 NO, NO2 and NH3) are studied by using the density functional theory. In this paper, we computed the adsorption energy, charge transfer, adsorption distance, band gap, electronic structure and recovery time of gas molecules on monolayer SbP. The calculated results indicate that monolayer SbP is sensitive to SO2, NO and NO2 molecules via strong physical interaction. Through the analysis of charge transfer, it could be seen that there were more charges transfer of NO (0.549e), NO2 (− 0.366e) and SO2 (− 0.263e) gas molecules than other gases. When SO2, NO and NO2 gas molecules are adsorbed on the monolayer SbP, the band structure was reduced apparently. In particular, for NO2 adsorption, impurity bands pass through the Fermi surface, making the system appear semimetallic properties. Furthermore, the adsorption of NO and NO2 can cause obvious deviation in the DOS. On further analysis, we knew that these changes were mainly due to the orbital hybridization between the p orbitals of N, O and S atoms and the p orbitals of Sb and P atoms. Theoretical studies show that monolayer SbP may be a potential gas sensing material for SO2, NO and NO2 gas molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bao H, Yu S, Tong DQ (2010) Massive volcanic SO2 oxidation and sulphate aerosol deposition in Cenozoic North America. Nature 465(7300):909–912

    Article  CAS  PubMed  Google Scholar 

  2. Upadhyay D, Roondhe B, Pratap A, Jha PK (2019) Two-dimensional delafossite cobalt oxyhydroxide as a toxic gas sensor. Appl Surf Sci 476:198–204

    Article  CAS  Google Scholar 

  3. Sun Y, Liu SB, Meng FL, Liu JY, Jin Z, Kong LT, Liu JH (2012) Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12(3):2610–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zavahir JS, Nolvachai Y, Marriott PJ (2018) Molecular spectroscopy—Information rich detection for gas chromatography. TrAC-Trend Anal Chem 99:47–65

    Article  CAS  Google Scholar 

  5. Sruthy PC, Nagarajan V, Chandiramouli R (2020) Interaction studies of kidney biomarker volatiles on black phosphorene nanoring: a first-principles investigation. J Mol Graph Model 97:107566

    Article  CAS  PubMed  Google Scholar 

  6. Zhang S, Guo S, Chen Z, Wang Y, Gao H, Gomez-Herrero J, Ares P, Zamora F, Zhu Z, Zeng H (2018) Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem Soc Rev 47(3):982–1021

    Article  CAS  PubMed  Google Scholar 

  7. Lv X, Zhang S, Wang J, Wang M, Shan J, Zhou S (2022) Charge controlled capture/release of CH4 on Nb2CTx MXene: a first-principles calculation. J Mol Graph Model 110:108056

    Article  CAS  PubMed  Google Scholar 

  8. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  PubMed  Google Scholar 

  9. Leenaerts O, Partoens B, Peeters FM (2008) Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study. Phys Rev B 77(12):125416

    Article  Google Scholar 

  10. Yun J, Lim Y, Jang GN, Kim D, Lee S-J, Park H, Hong SY, Lee G, Zi G, Ha JS (2016) Stretchable patterned graphene gas sensor driven by integrated micro-supercapacitor array. Nano Energy 19:401–414

    Article  CAS  Google Scholar 

  11. Aslam S, Bokhari TH, Anwar T, Khan U, Nairan A, Khan K (2019) Graphene oxide coated graphene foam based chemical sensor. Mater Lett 235:66–70

    Article  CAS  Google Scholar 

  12. Yuan W, Shi G (2013) Graphene-based gas sensors. J Mater Chem A 1(35):10078–10091

    Article  CAS  Google Scholar 

  13. Meng R-S, Cai M, Jiang J-K, Liang Q-H, Sun X, Yang Q, Tan C-J, Chen X-P (2017) First principles investigation of small molecules adsorption on antimonene. IEEE Electr Device Lett 38(1):134–137

    Article  CAS  Google Scholar 

  14. Liu C, Liu C-S, Yan X (2017) Arsenene as a promising candidate for NO and NO2 sensor: a first-principles study. Phys Lett A 381(12):1092–1096

    Article  CAS  Google Scholar 

  15. Faye O, Raj A, Mittal V, Beye AC (2016) H2S adsorption on graphene in the presence of sulfur: a density functional theory study. Comput Mater Sci 117:110–119

    Article  CAS  Google Scholar 

  16. Prasongkit J, Amorim RG, Chakraborty S, Ahuja R, Scheicher RH, Amornkitbamrung V (2015) Highly sensitive and selective gas detection based on silicene. Phys Chem C 119(29):16934–16940

    Article  CAS  Google Scholar 

  17. Xiao W-Z, Xiao G, Rong Q-Y, Wang L-L (2018) New two-dimensional V–V binary compounds with a honeycomb-like structure: a first-principles study. Mater Res Express 5(3):035903

    Article  Google Scholar 

  18. Guo S, Zhang Y, Ge Y, Zhang S, Zeng H, Zhang H (2019) 2D V-V binary materials: status and challenges. Adv Mater 31(39):1902352

    Article  Google Scholar 

  19. Young EP, Park J, Bai T, Choi C, DeBlock RH, Lange M, Poust S, Tice J, Cheung C, Dunn BS, Goorsky MS, Ozolinš V, Streit DC, Gambin V (2018) Wafer-scale black arsenic-phosphorus thin-film synthesis validated with density functional perturbation theory predictions. Acs Appl Nano Mater 1(9):4737–4745

    Article  CAS  Google Scholar 

  20. Wang T, Li X, Wang J, Li L, Li D (2022) Two-dimension black arsenic-phosphorus as a promising NO sensor: a DFT study. Chem Comput Theor Chem 1213:113727

    Article  CAS  Google Scholar 

  21. Zhang Y, Tan C, Yang Q, Ye H, Chen X-P (2017) Arsenic phosphorus monolayer: a promising candidate for H2S sensor and NO degradation with high sensitivity and selectivity. IEEE Electr Device Lett 38(9):1321–1324

    Article  CAS  Google Scholar 

  22. Xu Q, Duan K, Xie H, Zhang Q-R, Liang B-Q, Peng Z-K, Li W (2021) First principle study on gas sensor mechanism of black-AsP monolayer. Acta Phys Sin-Ch Ed 70(15):157101

    Article  Google Scholar 

  23. Cai B, Xie M, Zhang S, Huang C, Kan E, Chen X, Gu Y, Zeng H (2016) A promising two-dimensional channel material: monolayer antimonide phosphorus. Sci China Mater 59(8):648–656

    Article  CAS  Google Scholar 

  24. Guo H, Zheng K, Cui H, Zhang F, Yu J, Tao L-Q, Li X, Chen X (2020) High sensitivity gas sensor to detect SF6 decomposition components based on monolayer antimonide phosphorus. Chem Phys Lett 756(1):137868

    Article  CAS  Google Scholar 

  25. Delley B (2000) DMol3 DFT studies: from molecules and molecular environments to surfaces and solids. Comput Mater Sci 17:122–126

    Article  CAS  Google Scholar 

  26. Zhang Y, Yang W (1998) Comment on “Generalized Gradient Approximation Made Simple.” Phys Rev Lett 80:890

    Article  CAS  Google Scholar 

  27. Zhou Y, Sun W, Chu W, Zheng J, Gao X, Zhou X, Xue Y (2018) Adsorption of acetylene on ordered NixAg1-x/Ni (111) and effect of Ag-dopant: a DFT study. Appl Surf Sci 435:521–528

    Article  CAS  Google Scholar 

  28. Zhang Y, Chen YB, Zhou KG, Liu CH, Zeng J, Zhang HL, Peng Y (2009) Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nat Nanotechnol 20(18):185504

    Article  Google Scholar 

  29. Cai B, Xie M, Zhang S, Huang C, Kan E, Chen X, Gu Y, Zeng H (2016) A promising two-dimensional channel material: monolayer antimonide phosphorus. Sc iChina Mater 59(8):648–656

    CAS  Google Scholar 

  30. Kocabas T, Cakir D, Gulseren O, Ay F, Kosku Perkgoz N, Sevik C (2018) A distinct correlation between the vibrational and thermal transport properties of group VA monolayer crystals. Nanoscale 10(16):7803–7812

    Article  CAS  PubMed  Google Scholar 

  31. Shu Y, Huang Z, Liu H, Liao Y, Liu F, Qi X, Zhong J (2021) Strain engineering in novel α-SbP binary material with tensile-robust and compress-sensitive band structures. Physica E 128:114623

    Article  CAS  Google Scholar 

  32. Pyykko P, Atsumi M (2009) Molecular single-bond covalent radii for elements 1–118. Chem-Eur J 15(1):186–197

    Article  PubMed  Google Scholar 

  33. Lang N, Kohn W (1971) Theory of Metal Surfaces: Work Function. Phys Rev B 3:1215–1223

    Article  Google Scholar 

  34. Giovannetti G, Khomyakov P, Brocks G (2008) Doping graphene with metal contacts. Phys Rev Lett 101:026803

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (52102017), the Natural Science Foundation of Henan (222301420038), the Doctoral Fund Project of Henan Polytechnic University (B2019-40), the Henan Postdoctoral Foundation (202101035) and the Fundamental Research Funds for the Universities of Henan Province (NSFRF220410).

Author information

Authors and Affiliations

Authors

Contributions

XL and JW has conceived the idea and guided the study. DL performed the calculations and the data analysis and made the tables and figures for the manuscript and provided the draft of the manuscript. TW performed supervision. YW performed visualization and data curation. The final draft was read and finalized by all authors.

Corresponding authors

Correspondence to Xiaolei Li or Junkai Wang.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Li, X., Wang, J. et al. Adsorption studies of air pollutants on α-SbP with density functional theory. Theor Chem Acc 142, 112 (2023). https://doi.org/10.1007/s00214-023-03033-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-03033-5

Keywords

Navigation