Skip to main content

Advertisement

Log in

CDFT-based chemical reactivity properties analysis of the fluorine substitution in the selective estrogen receptor modulator (SERM) Tamoxifen

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In Mexico, breast cancer is the leading cause of cancer death among women. The growing increase in the disease is closely related to the aging of the population and a higher prevalence of risk factors among the female population. Currently, breast cancer is one of the main health problems for women over 40 years of age. Conventional cancer therapies face significant challenges such as poor bioavailability and intrinsic toxicity. The replacement of a carbon–hydrogen and carbon–oxygen bond with a carbon–fluorine bond in medicinally active compounds has often been found to introduce or improve desirable pharmacological properties, such as higher metabolic stability. Fluorine imparts desirable characteristics to the drug modulating both the pharmacokinetics and pharmacodynamics properties. There are many examples of the use of fluorine to modify physical properties, binding characteristics, and metabolic disposition. Molecular Modeling techniques can predict the properties and behavior of new drugs. In this work, the modification of Tamoxifen’s structures, which belong to the family of selective estrogen receptor modulators (SERMs) used against breast cancer, was done by including fluorine (F) atoms replacing the hydrogen (H) ones in specific sites defined by the computational calculations’ progress. The new drugs were studied by determining their molecular structures and properties by considering Density Functional Theory (DFT) and calculating the parameters associated with chemical reactivity by resorting to Conceptual DFT. In a complementary way, the pharmacokinetics and bioavailability of the newly generated molecules were established using some commonly available Cheminformatics tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

All generated data are available from the authors under request.

References

  1. World Health Organization (WHO): Cancer (2022). https://www.who.int/health-topics/cancer#tab=tab_1

  2. Wang X, Chen X, Yang X, Gao W, He B, Dai W, Zhang H, Wang X, Wang J, Zhang X, Dai Z, Zhang Q (2016) A nanomedicine based combination therapy based on qlpvm peptide functionalized liposomal tamoxifen and doxorubicin against luminal A breast cancer. Nanomed Nanotechnol Biol Med 12(2):387–397. https://doi.org/10.1016/j.nano.2015.12.360

    Article  CAS  Google Scholar 

  3. Fundación de Cancer de Mama (FUCAM): breast cancer (2022). https://fucam.org.mx

  4. Nazir S, Hussain T, Ayub A, Rashid U, MacRobert AJ (2014) Nanomaterials in combating cancer: therapeutic applications and developments. Nanomed Nanotechnol Biol Med 10(1):19–34. https://doi.org/10.1016/j.nano.2013.07.001

    Article  CAS  Google Scholar 

  5. Cozzi P, Mongelli N, Suarato A (2004) Recent anticancer cytotoxic agents. Current Med Chem-Anti-Cancer Agents 4(2):93–121. https://doi.org/10.2174/1568011043482061

    Article  CAS  Google Scholar 

  6. O’Hagan D (2010) Fluorine in health care: organofluorine containing blockbuster drugs. J Fluorine Chem 131(11):1071–1081. https://doi.org/10.1016/j.jfluchem.2010.03.003

    Article  CAS  Google Scholar 

  7. Ojima I (2017) Strategic incorporation of fluorine into taxoid anticancer agents for medicinal chemistry and chemical biology studies. J Fluor Chem 198:10–23. https://doi.org/10.1016/j.jfluchem.2016.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ismail FMD (2002) Important fluorinated drugs in experimental and clinical use. J Fluor Chem 118(1–2):27–33. https://doi.org/10.1016/s0022-1139(02)00201-4

    Article  CAS  Google Scholar 

  9. Brauch H, Jordan VC (2009) Targeting of tamoxifen to enhance antitumour action for the treatment and prevention of breast cancer: the ‘personalised’ approach? Eur J Cancer 45(13):2274–2283. https://doi.org/10.1016/j.ejca.2009.05.032

    Article  CAS  PubMed  Google Scholar 

  10. BREASTCANCER.ORG: Hormonal Therapy (2022). https://www.breastcancer.org/treatment/hormonal-therapy

  11. Prakash Reddy V (2015) Organofluorine compounds in biology and medicine. Elsevier, Oxford, UK. https://doi.org/10.1016/c2010-0-64780-8

    Book  Google Scholar 

  12. Fried J, Sabo EF (1954) 9\(\upalpha\)-Fluoro derivatives of cortisone and hydrocortisone. J Am Chem Soc 76(5):1455–1456. https://doi.org/10.1021/ja01634a101

    Article  CAS  Google Scholar 

  13. Hagmann WK (2008) The many roles for fluorine in medicinal chemistry. J Med Chem 51(15):4359–4369. https://doi.org/10.1021/jm800219f

    Article  CAS  PubMed  Google Scholar 

  14. Purser S, Moore PR, Swallow S, Gouverneur V (2008) Fluorine in medicinal chemistry. Chem Soc Rev 37(2):320–330. https://doi.org/10.1039/b610213c

    Article  CAS  PubMed  Google Scholar 

  15. Isanbor C, O’Hagan D (2006) Fluorine in medicinal chemistry: a review of anti-cancer agents. J Fluor Chem 127(3):303–319. https://doi.org/10.1016/j.jfluchem.2006.01.011

    Article  CAS  Google Scholar 

  16. Kenawi IM (2006) DFT analysis of diclofenac activity and cation type influence on the theoretical parameters of some diclofenac complexes. J Mol Struct (Thoechem) 761(1–3):151–157. https://doi.org/10.1016/j.theochem.2005.12.036

    Article  CAS  Google Scholar 

  17. Flores-Holguín N, Glossman-Mitnik D (2005) CHIHDFT determination of the electrical, optical, and magnetic properties and NICS aromaticity of megazol. J Mol Struct (Thoechem) 717(1–3):1–3. https://doi.org/10.1016/j.theochem.2004.10.089

    Article  CAS  Google Scholar 

  18. Luzhkov VB (1985) Electronic parameters and molecular mechanisms of biological action of nitroxyl radicals. J Mol Struct (Thoechem) 121:165–172. https://doi.org/10.1016/0166-1280(85)80056-7

    Article  Google Scholar 

  19. Rao YBS, Prasad MVS, Sri NU, Veeraiah V (2016) Vibrational (FT-IR, FT-Raman) and UV-Visible spectroscopic studies, HOMO-LUMO, NBO, NLO and MEP analysis of benzyl(imino(1H-pyrazol-1-yl)methyl) carbamate using DFT calculations. J Mol Struct 1108:567–582. https://doi.org/10.1016/j.molstruc.2015.12.008

    Article  CAS  Google Scholar 

  20. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  21. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20(1):129–154. https://doi.org/10.1002/(sici)1096-987x(19990115)20:1<129::aid-jcc13>3.0.co;2-a

    Article  CAS  Google Scholar 

  22. Geerlings P, Proft FD, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103(5):1793–1874. https://doi.org/10.1021/cr990029p

    Article  CAS  PubMed  Google Scholar 

  23. Geerlings P, Chamorro E, Chattaraj PK, Proft FD, Gázquez JL, Liu S, Morell C, Toro-Labbé A, Vela A, Ayers P (2020) Conceptual density functional theory: status, prospects, issues. Theor Chem Acc. https://doi.org/10.1007/s00214-020-2546-7

    Article  Google Scholar 

  24. Chattaraj PK (ed) (2009) Chemical reactivity theory–a density functional view. CRC Press. Taylor & Francis Group, Boca Raton, FL

    Google Scholar 

  25. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26. https://doi.org/10.1016/s0169-409x(00)00129-0

    Article  CAS  PubMed  Google Scholar 

  26. Sterling T, Irwin JJ (2015) ZINC 15 - ligand discovery for everyone. J Chem Inf Model 55(11):2324–2337. https://doi.org/10.1021/acs.jcim.5b00559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17(5–6): 490–519. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P

  28. Halgren TA (1999) MMFF VI MMFF94s option for energy minimization studies. J Comput Chem 20(7):720–729. https://doi.org/10.1002/(sici)1096-987x(199905)20:7<720::aid-jcc7>3.0.co;2-x

  29. Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13(12):1173–1213. https://doi.org/10.1007/s00894-007-0233-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297. https://doi.org/10.1039/b508541a

    Article  CAS  PubMed  Google Scholar 

  31. Peverati R, Truhlar DG (2012) Screened-exchange density functionals with broad accuracy for chemistry and solid-state physics. Phys Chem Chem Phys 14(47):16187. https://doi.org/10.1039/c2cp42576a

    Article  CAS  PubMed  Google Scholar 

  32. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396. https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

  33. Frau J, Glossman-Mitnik D (2018) Molecular reactivity and absorption properties of melanoidin blue-G1 through conceptual DFT. Molecules 23(3):559. https://doi.org/10.3390/molecules23030559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frau J, Flores-Holguín N, Glossman-Mitnik D (2018) Chemical reactivity properties, pKa values, AGEs inhibitor abilities and bioactivity scores of the mirabamides A-H peptides of marine origin studied by means of conceptual DFT. Mar Drugs 16(9):302. https://doi.org/10.3390/md16090302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Borghi G, Ferretti A, Nguyen NL, Dabo I, Marzari N (2014) Koopmans-compliant functionals and their performance against reference molecular data. Phys Rev B. https://doi.org/10.1103/physrevb.90.075135

    Article  Google Scholar 

  36. Dabo I, Ferretti A, Poilvert N, Li Y, Marzari N, Cococcioni M (2010) Koopmans’ condition for density-functional theory. Phys Rev B. https://doi.org/10.1103/physrevb.82.115121

    Article  Google Scholar 

  37. Kar R, Song J-W, Hirao K (2013) Long-range corrected functionals satisfy Koopmans’ theorem: calculation of correlation and relaxation energies. J Comput Chem 34(11):958–964. https://doi.org/10.1002/jcc.23222

    Article  CAS  PubMed  Google Scholar 

  38. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–1924. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  39. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106(6):2065–2091. https://doi.org/10.1021/cr040109f

    Article  CAS  PubMed  Google Scholar 

  40. Gázquez JL, Cedillo A, Vela A (2007) Electrodonating and electroaccepting powers. J Phys Chem A 111(10):1966–1970. https://doi.org/10.1021/jp065459f

    Article  CAS  PubMed  Google Scholar 

  41. Chattaraj PK, Chakraborty A, Giri S (2009) Net electrophilicity. J Phys Chem A 113(37):10068–10074. https://doi.org/10.1021/jp904674x

    Article  CAS  PubMed  Google Scholar 

  42. Sakai JB (2008) Absorption, Distribution, Metabolism, and Excretion in Drugs. In: Sakai JB (ed) Practical pharmacology for the pharmacy technician. Lippincott Williams and Wilkins, Philadelphia, PA, pp 27–40

    Google Scholar 

  43. Daina A, Michielin O, Zoete V (2019) SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res 47(W1):357–364. https://doi.org/10.1093/nar/gkz382

    Article  CAS  Google Scholar 

  44. Geldenhuys WJ, Mohammad AS, Adkins CE, Lockman PR (2015) Molecular determinants of blood-brain barrier permeation. Ther Deliv 6(8):961–971. https://doi.org/10.4155/tde.15.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hollenberg PF (2002) Characteristics and common properties of inhibitors, inducers, and activators of CYP enzymes. Drug Metab Rev 34(1–2):17–35. https://doi.org/10.1081/dmr-120001387

    Article  CAS  PubMed  Google Scholar 

  46. Huang S-M, Strong JM, Zhang L, Reynolds KS, Nallani S, Temple R, Abraham S, Habet SA, Baweja RK, Burckart GJ, Chung S, Colangelo P, Frucht D, Green MD, Hepp P, Karnaukhova E, Ko H-S, Lee J-I, Marroum PJ, Norden JM, Qiu W, Rahman A, Sobel S, Stifano T, Thummel K, Wei X-X, Yasuda S, Zheng JH, Zhao H, Lesko LJ (2008) New era in drug interaction evaluation: US food and drug administration update on CYP enzymes, transporters, and the guidance process. J Clin Pharmacol 48(6):662–670. https://doi.org/10.1177/0091270007312153

    Article  CAS  PubMed  Google Scholar 

  47. Kirchmair J, Göller AH, Lang D, Kunze J, Testa B, Wilson ID, Glen RC, Schneider G (2015) Predicting drug metabolism: experiment and/or computation? Nat Rev Drug Discov 14(6):387–404. https://doi.org/10.1038/nrd4581

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Daniel Glossman-Mitnik (DGM) and Norma Flores-Holguín (NFH) are researchers at CIMAV and CONACYT from which partial support is also acknowledged.

Funding

This work received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

NFH conceived the concept and designed the study. NFH and DGM carried out the theoretical calculations and analysis. NFH and DGM co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Norma Flores-Holguín.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest regarding the publication of this manuscript.

Consent for publication

All authors have consented for the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 132 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-Holguín, N., Glossman-Mitnik, D. CDFT-based chemical reactivity properties analysis of the fluorine substitution in the selective estrogen receptor modulator (SERM) Tamoxifen. Theor Chem Acc 142, 79 (2023). https://doi.org/10.1007/s00214-023-03018-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-03018-4

Keywords

Navigation