Skip to main content
Log in

Vibrational spectrum and randomness of water at the interface of a protein–DNA complex

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations have been carried out to explore the effect of complex formation between the N-terminal domain of the \(\lambda \)-repressor protein (in dimeric form) and the corresponding DNA operator on low-frequency intermolecular vibrational modes of water confined at the interface. The calculations demonstrated enhanced back-scattering of interfacial water due to increased caging effects, the effect being greater for water molecules that are associated with direct binding process. Highest degree of caging effect has been identified with the water molecules that are engaged in forming hydrogen-bonded bridges either near directly bound residues or in establishing contacts between the unbound DNA and protein residues. This leads to blue shifts of the O\(\cdots \)O\(\cdots \)O bending mode of water and the effect is maximum for the bridged water. The analyses further demonstrated that the local randomness of the interfacial water molecules strongly depends on the conformational rigidity of the DNA and the protein components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data used in this study are openly available with contacting Sandip Mondal

References

  1. Nelson DL, Cox MM (2000) Lehninger Principles of Biochemistry. Worth, New York

    Google Scholar 

  2. Branzei D, Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9(4):297–308

    Article  CAS  PubMed  Google Scholar 

  3. Beamer LJ, Pabo CO (1992) Refined 1.8 å crystal structure of the \(\lambda \)-repressor-operator complex. J Mol Biol 227(1):177–196

    Article  CAS  PubMed  Google Scholar 

  4. Pavletich NP, Pabo CO (1993) Crystal structure of a five-finger gli-dna complex: new perspectives on zinc fingers. Science 261:1701–1707

    Article  CAS  PubMed  Google Scholar 

  5. Hamès C et al (2008) Structural basis for leafy floral switch function and similarity with helix-turn-helix proteins. EMBO J. 27(19):2628–2637

    Article  PubMed  PubMed Central  Google Scholar 

  6. Watkins D, Mohan S, Koudelka GB, Williams LD (2010) Sequence recognition of DNA by protein-induced conformational transitions. J Mol Biol 396(4):1145–1164

    Article  CAS  PubMed  Google Scholar 

  7. Wolberger C, Dong Y, Ptashne M, Harrison SC (1988) Structure of a phage 434 cro/DNA complex. Nature 335:789–795

    Article  CAS  PubMed  Google Scholar 

  8. Esadze A, Iwahara J (2014) Stopped-flow fluorescence kinetic study of protein sliding and intersegment transfer in the get DNA search process. J Mol Biol 426(1):230–244

    Article  CAS  PubMed  Google Scholar 

  9. Batabyal S, Choudhury S, Sao D, Mondol T, Pal SK (2014) Dynamical perspective of protein-DNA interaction. Biomolecular concepts 5(1):21–43

    Article  CAS  PubMed  Google Scholar 

  10. Samiee KT, Foquet M, Guo L, Cox E, Craighead H (2005) \(\lambda \)-repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides. Biophys J 88(3):2145–2153

    Article  CAS  PubMed  Google Scholar 

  11. Levy Y, Onuchic JN (2006) Water mediation in protein folding and molecular recognition. Annu Rev Biophys Biomol Struct 35:389–415

    Article  CAS  PubMed  Google Scholar 

  12. Yamane T, Okamura H, Ikeguchi M, Nishimura Y, Kidera A (2008) Water-mediated interactions between DNAand phob dna-binding/transactivation domain: Nmr-restrained molecular dynamics in explicit water environment. Proteins: Struct Funct Bioinf 71(4):1970–1983

    Article  CAS  Google Scholar 

  13. Qin Y et al (2013) Direct probing of solvent accessibility and mobility at the binding interface of polymerase (dpo4)-dna complex. J Phy Chem A 117(50):13926–13934

    Article  CAS  Google Scholar 

  14. Balaeff A, Churchill M. E, Schulten K (1998) Structure prediction of a complex between the chromosomal protein hmg-d and dna. Proteins: Struct, Funct, Bioinf 30(2):113–135

    Article  CAS  Google Scholar 

  15. Xhani S, Esaki S, Huang K, Erlitzki N, Poon GM (2017) Distinct roles for interfacial hydration in site-specificDNA recognition by ets-family transcription factors. J Phys Chem B 121(13):2748–2758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Etheve L, Martin J, Lavery R (2016) Dynamics and recognition within a protein-dna complex: a molecular dynamics study of the skn-1/dna interaction. Nucleic Acids Res 44(3):1440–1448

    Article  CAS  PubMed  Google Scholar 

  17. Song W, Guo J-T (2015) Investigation of arc repressor dna-binding specificity by comparative molecular dynamics simulations. J Biomol Struct Dyn 33(10):2083–2093

    Article  CAS  PubMed  Google Scholar 

  18. Yamasaki S, Terada T, Kono H, Shimizu K, Sarai A (2012) A new method for evaluating the specificity of indirect readout in protein-dna recognition. Nucleic Acids Res 40(17):e129–e129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sinha SK, Bandyopadhyay S (2011) Dynamic properties of water around a protein-dna complex from molecular dynamics simulations. J Chem Phys 135(13):135101

    Article  PubMed  Google Scholar 

  20. Lenz SA, Wetmore SD (2016) Evaluating the substrate selectivity of alkyladenine dna glycosylase: the synergistic interplay of active site flexibility and water reorganization. Biochemistry 55(5):798–808

    Article  CAS  PubMed  Google Scholar 

  21. Mondal S, Chakraborty K, Bandyopadhyay S (2017) Microscopic understanding of the conformational features of a protein-dna complex. Phys Chem Chem Phys 19(48):32459–32472

    Article  CAS  PubMed  Google Scholar 

  22. Mondal S, Bandyopadhyay S (2019) Flexibility of the binding regions of a protein-dna complex and the structure and ordering of interfacial water. J Chem Inf Model 59(10):4427–4437

    Article  CAS  PubMed  Google Scholar 

  23. Mondal S, Bandyopadhyay S (2020) Heterogeneous dynamical environment at the interface of a protein-dna complex. Langmuir 36(17):4567–4581

    Article  CAS  PubMed  Google Scholar 

  24. Pabo CO, Lewis M (1982) The operator-binding domain of \(\lambda \)-repressor: Structure and dna recognition. Nature 298:443–447

    Article  CAS  PubMed  Google Scholar 

  25. Details of the repressor-operator interactions (1988) Jordan, S. R. & Pabo, C. O. Structure of the lambda complex at 2.5 å resolution. Science 242:893–899

    Article  Google Scholar 

  26. Phillips JC et al (2005) Scalable molecular dynamics with namd. J Comput Chem 26(16):1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Foloppe N, MacKerell AD Jr (2000) All-atom empirical force field for nucleic acids: I. parameter optimization based on small molecule and condensed phase macromolecular target data. J Comput Chem 21(2):86–104

    Article  CAS  Google Scholar 

  28. Mackerell AD, Banavali NK (2000) All-atom empirical force field for nucleic acids: Ii. application to molecular dynamics simulations of dna and rna in solution. J Comput Chem 21(2):105–120

    Article  CAS  Google Scholar 

  29. MacKerell AD Jr et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    Article  CAS  PubMed  Google Scholar 

  30. Mackerell AD Jr (2004) Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25(13):1584–1604

    Article  CAS  PubMed  Google Scholar 

  31. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  32. Ryckaert J-P, Ciccotti G, Berendsen HJ (1977) Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 23(3):327–341

    Article  CAS  Google Scholar 

  33. Allen MP, Tildesley DJ (1987) Computer Simulation of Liquids (Oxford university press,)

  34. Darden T, York D, Pedersen L (1993) Particle mesh ewald: An n-log(n) method for ewald sums in large systems. J Chem Phys 98(12):10089–10092

    Article  CAS  Google Scholar 

  35. Walrafen G, Chu Y (1995) Linearity between structural correlation length and correlated-proton raman intensity from amorphous ice and supercooled water up to dense supercritical steam. J Phys Chem 99(28):11225–11229

    Article  CAS  Google Scholar 

  36. Walrafen G, Chu Y, Piermarini G (1996) Low-frequency raman scattering from water at high pressures and high temperatures. J Phys Chem 100(24):10363–10372

    Article  CAS  Google Scholar 

  37. Brubach J-B, Mermet A, Filabozzi A, Gerschel A, Roy P (2005) Signatures of the hydrogen bonding in the infrared bands of water. J Chem Phys 122(18):184509

    Article  PubMed  Google Scholar 

  38. Li J (1996) Inelastic neutron scattering studies of hydrogen bonding in ices. J Chem Phys 105(16):6733–6755

    Article  CAS  Google Scholar 

  39. Crupi V, Dianoux AJ, Majolino D, Migliardo P, Venuti V (2002) Dynamical response of liquid water in confined geometry by laser and neutron spectroscopies. Phys Chem Chem Phys 4(12):2768–2773

    Article  CAS  Google Scholar 

  40. Martì J, Padró JÀ, Guàrdia E (1996) Molecular dynamics simulation of liquid water along the coexistence curve: hydrogen bonds and vibrational spectra. J Chem Phys 105(2):639–649

    Article  Google Scholar 

  41. Padró JÀ, Martì J (2003) An interpretation of the low-frequency spectrum of liquid water. J Chem Phys 118(1):452–453

    Article  Google Scholar 

  42. Svishchev I. M, Kusalik P. G (1994) Rotational dynamics in liquid water: a simulation study of librational motions. J Chem Soc, Faraday Trans 90(10):1405–1409

    Article  CAS  Google Scholar 

  43. Mazur K, Heisler IA, Meech SR (2012) Water dynamics at protein interfaces: ultrafast optical kerr effect study. J Phys Chem A 116(11):2678–2685

    Article  CAS  PubMed  Google Scholar 

  44. Paciaroni A et al (2008) Fingerprints of amorphous icelike behavior in the vibrational density of states of protein hydration water. Phys Rev Lett 101(14):148104

    Article  CAS  PubMed  Google Scholar 

  45. Perticaroli S et al (2010) Broadband depolarized light scattering study of diluted protein aqueous solutions. J Phys Chem B 114(24):8262–8269

    Article  CAS  PubMed  Google Scholar 

  46. Luong TQ, Xu Y, Bründermann E, Leitner DM, Havenith M (2016) Hydrophobic collapse induces changes in the collective protein and hydration low frequency modes. Chem Phys Lett 651:1–7

    Article  CAS  Google Scholar 

  47. Heyden M, Havenith M (2010) Combining thz spectroscopy and md simulations to study protein-hydration coupling. Methods 52(1):74–83

    Article  CAS  PubMed  Google Scholar 

  48. Wirtz H et al (2018) Hydrophobic collapse of ubiquitin generates rapid protein-water motions. Biochemistry 57(26):3650–3657

    Article  CAS  PubMed  Google Scholar 

  49. Shiraga K, Ogawa Y, Kondo N (2016) Hydrogen bond network of water around protein investigated with terahertz and infrared spectroscopy. Biophys J 111(12):2629–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin S-T, Blanco M, Goddard WA III (2003) The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: validation for the phase diagram of lennard-jones fluids. J Chem Phys 119(22):11792–11805

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grant received from the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India (Ref. No. CRG/2020/000044) as well as grant received under DST-FIST programme. Sandip Mondal thanks University Grants Commission (UGC), Government of India (23/12/2012(ii)EU-V), while Krishna P. Ghanta and Souvik Mondal thank Council of Scientific and Industrial Research (CSIR), Government of India (09/081(1312)/2017-EMR-I, dated 18.10.2017 and 09/081(1272)/2015-EMR-I, dated 29.12.2015) for scholarships This work used the resources of the supercomputing facility of the Indian Institute of Technology Kharagpur established under National Supercomputing Mission (NSM), Government of India.

Author information

Authors and Affiliations

Authors

Contributions

SM performed the simulations and carried out partial analysis, KPG and SM carried out analysis and prepared the figures, SB conceptualized the idea of the manuscript. All the authors were involved in preparing the manuscript.

Corresponding author

Correspondence to Sanjoy Bandyopadhyay.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 79 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S., Ghanta, K.P., Mondal, S. et al. Vibrational spectrum and randomness of water at the interface of a protein–DNA complex. Theor Chem Acc 142, 75 (2023). https://doi.org/10.1007/s00214-023-03017-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-03017-5

Keywords

Navigation