Skip to main content
Log in

What dictates alkane isomerization? A combined density functional theory and information-theoretic approach study

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Alkanes are deceptively simple in their geometric structures, yet their electronic structures are a tough nut to crack. We employ two total energy partition schemes in density functional theory and the information-theoretic approach quantities to dissect the so-called isomerization problem. From our validation results, we have found theoretical methods, basis sets, dispersion corrections, and numerical integration grids all make contributions to the total energy difference. We highly recommend that PBE0-D3(BJ)/def2-QZVPP is a good choice for studying the longer alkane isomerization issue. We further find that the electrostatic potential dominates the isomerization of alkanes, provided that empirical dispersion is added. This conformational flexibility can be easily explained in the framework of conceptual density functional theory. This observation contrasts the commonly held belief that electron delocalization dictates alkane isomerization. We also find that molecular polarizability can be linearly correlated with some ITA quantities (such as Shannon entropy and Fisher information), indicating that simple density-based functions can be good descriptors of molecular properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pitzer KS (1937) Thermodynamics of gaseous hydrocarbons: ethane, ethylene, propane, propylene, n-butane, isobutane, 1-butene, cis and trans 2-butenes, isobutene, and neopentane (tetramethylmethane). J Chem Phys 5:473–479

    Article  CAS  Google Scholar 

  2. Herrebout WA, van der Veken BJ, Wang A, Durig JR (1995) Enthalpy difference between conformers of n-butane and the potential function governing conformational interchange. J Phys Chem 99:578–585

    Article  CAS  Google Scholar 

  3. Smith GD, Jaffe RL (1996) Quantum chemistry study of conformational energies and rotational energy barriers in n-alkanes. J Phys Chem 100:18718–18724

    Article  CAS  Google Scholar 

  4. Allinger NL, Fermann JT, Allen WD, Schaefer HF III (1997) The torsional conformations of butane: definitive energetics from ab initio methods. J Chem Phys 106:5143–5150

    Article  CAS  Google Scholar 

  5. Salam A, Deleuze MS (2002) High-level theoretical study of the conformational equilibrium of n-pentane. J Chem Phys 116:1296–1302

    Article  CAS  Google Scholar 

  6. Karton A, Gruzman D, Martin JML (2009) Benchmark thermochemistry of the CnH2n+2 alkane isomers (n = 2–8) and performance of DFT and composite ab initio methods for dispersion-driven isomeric equilibria. J Phys Chem A 113:8434–8447

    Article  CAS  PubMed  Google Scholar 

  7. Gruzman D, Karton A, Martin JML (2009) Performance of ab initio and density functional methods for conformational equilibria of CnH2n+2 alkane isomers (n = 4–8). J Phys Chem A 113:11974–11983

    Article  CAS  PubMed  Google Scholar 

  8. Martin JML (2013) What can we learn about dispersion from the conformer surface of n-pentane? J Phys Chem A 117:3118–3132

    Article  CAS  PubMed  Google Scholar 

  9. Liakos DG, Neese F (2015) Domain based pair natural orbital coupled cluster studies on linear and folded alkane chains. J Chem Theory Comput 11:2137–2143

    Article  CAS  PubMed  Google Scholar 

  10. Byrd JN, Bartlett RJ, Montgomery JA Jr (2014) At what chain length do unbranched alkanes prefer folded conformations? J Phys Chem A 118:1706–1712

    Article  CAS  PubMed  Google Scholar 

  11. Goodman JM (1997) What is the longest unbranched alkane with a linear global minimum conformation? J Chem Inf Comp Sci 37:876–878

    Article  CAS  Google Scholar 

  12. Lüttschwager NOB, Wassermann TN, Mata RA, Suhm MA (2013) The last globally stable extended alkane. Angew Chem Int Ed 52:463–466

    Article  Google Scholar 

  13. Ehlert S, Grimme S, Hansen A (2022) Conformational energy benchmark for longer n-alkane chains. J Phys Chem A 26:3521–3535

    Article  Google Scholar 

  14. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  15. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  16. Grimme S, Hansen A, Brandenburg JG, Bannwarth C (2016) Dispersion-corrected mean-field electronic structure methods. Chem Rev 116:5105–5154

    Article  CAS  PubMed  Google Scholar 

  17. Wodrich MD, Corminboeuf C, PvR S (2006) Systematic errors in computed alkane energies using B3LYP and other popular DFT functionals. Org Lett 8:3631–3634

    Article  CAS  PubMed  Google Scholar 

  18. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874

    Article  CAS  PubMed  Google Scholar 

  19. Johnson PA, Bartolotti LJ, Ayers PW, Fievez T, Geerlings P (2012) Charge density and chemical reactivity: a unified view from conceptual DFT. In: Gatti C, Macchi P, (eds) Modern charge density analysis. Springer: New York

  20. Liu SB (2009) Conceptual density functional theory and some recent developments. Acta Phys-Chim Sin 25:590–600

    Article  CAS  Google Scholar 

  21. Geerlings P, Chamorro E, Chattaraj PK, De Proft F, Gázquez JL, Liu S, Morell C, Toro-Labbé A, Vela A, Ayers PW (2020) Conceptual density functional theory: status, prospects, issues. Theor Chem Acc 139:36

    Article  CAS  Google Scholar 

  22. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  23. Fisher RA (1925) Theory of statistical estimation. Math Proc Camb Philos Soc 22:700–725

    Article  Google Scholar 

  24. Ghosh SK, Berkowitz M, Parr RG (1984) Transcription of ground-state density-functional theory into a local thermodynamics. Proc Natl Acad Sci USA 81:8028–8031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu SB (2019) Identity for Kullback–Leibler divergence in density functional reactivity theory. J Chem Phys 151:141103

    Article  PubMed  Google Scholar 

  26. Parr RG, Yang WT (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  27. Teale AM, Helgaker T, Savin A, Adamo C, Aradi B, Arbuznikov AV, Ayers PW, Baerends EJ, Barone V, Calaminici P, Cancès E, Carter EA, Chattaraj PK, Chermette H, Ciofini I, Crawford TD, De Proft F, Dobson JF, Draxl C, Frauenheim T, Fromager E, Fuentealba P, Gagliardi L, Galli G, Gao JL, Geerlings P, Gidopoulos N, Gill PMW, Gori-Giorgi P, Görling A, Gould T, Grimme S, Gritsenko O, Jensen HJA, Johnson ER, Jones RO, Kaupp M, Köster AM, Kronik L, Krylov AI, Kvaal S, Laestadius A, Levy M, Lewin M, Liu SB, Loos P-F, Maitra NT, Neese F, Perdew JP, Pernal K, Pernot P, Piecuch P, Rebolini E, Reining L, Romaniello P, Ruzsinszky A, Salahub DR, Scheffler M, Schwerdtfeger P, Staroverov VN, Sun JW, Tellgren E, Tozer DJ, Trickey SB, Ullrich CA, Vela A, Vignale G, Wesolowski TA, Xu X, Yang WT (2022) DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science. Phys Chem Chem Phys 24:28700–28781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu SB (2007) Steric effect: a quantitative description from density functional theory. J Chem Phys 126:244103

    Article  PubMed  Google Scholar 

  29. von Weizsäcker CF (1935) Zur theorie der kernmassen. Z Phys 96:431–458

    Article  Google Scholar 

  30. Rong CY, Wang B, Zhao DB, Liu SB (2020) Information-theoretic approach in density functional theory and its recent applications to chemical problems. WIREs Comput Mol Sci 10:e1461

    Article  CAS  Google Scholar 

  31. Rong CY, Zhao DB, He X, Liu SB (2022) Development and applications of the density-based theory of chemical reactivity. J Phys Chem Lett 13:11191–11200

    Article  CAS  PubMed  Google Scholar 

  32. Liu SB, Rong CY, Wu ZM, Lu T (2015) Rényi entropy, Tsallis entropy and Onicescu information energy in density functional reactivity theory. Acta Phys-Chim Sin 31:2057–2063

    Article  CAS  Google Scholar 

  33. Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:79–86

    Article  Google Scholar 

  34. Wang B, Zhao DB, Lu T, Liu SB, Rong CY (2021) Quantifications and applications of relative fisher information in density functional theory. J Phys Chem A 125:3802–3811

    Article  CAS  PubMed  Google Scholar 

  35. Zhao DB, Liu SB, Chen DH (2022) A density functional theory and information-theoretic approach study of interaction energy and polarizability for base pairs and peptides. Pharmaceuticals 15:938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao DB, Zhao YL, He X, Ayers PW, Liu SB (2022) Efficient and accurate density-based prediction of macromolecular polarizabilities. Phys Chem Chem Phys 25:2131–2141

    Article  Google Scholar 

  37. Zhou XY, Yu DH, Rong CY, Lu T, Liu SB (2017) Anomeric effect revisited: perspective from information-theoretic approach in density functional reactivity theory. Chem Phys Lett 684:97–102

    Article  CAS  Google Scholar 

  38. Cao XF, Liu SQ, Rong CY, Lu T, Liu SB (2017) Is there a generalized anomeric effect? Analyses from energy components and information-theoretic quantities from density functional reactivity theory. Chem Phys Lett 687:131–137

    Article  CAS  Google Scholar 

  39. Zhao DB, Liu SY, Rong CY, Zhong AG, Liu SB (2018) Towards understanding isomeric stability of fullerenes with density functional theory and information-theoretic approach. ACS Omega 3:17986–17990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cao XF, Rong CY, Zhong AG, Lu T, Liu SB (2017) Molecular acidity: An accurate description with information-theoretic approach in density functional reactivity theory. J Comput Chem 39:117–129

    Article  PubMed  Google Scholar 

  41. Xiao XZ, Cao XF, Zhao DB, Rong CY, Liu SB (2020) Quantification of molecular basicity for amines: a combined conceptual density functional theory and information-theoretic approach study. Acta Phys-Chim Sin 36:1906034

    Google Scholar 

  42. Yu DH, Rong CY, Lu T, Chattaraj PK, De Proft F, Liu SB (2017) Aromaticity and antiaromaticity of substituted fulvene derivatives: Perspective from information-theoretic approach in density functional reactivity theory. Phys Chem Chem Phys 19:18635–18645

    Article  CAS  PubMed  Google Scholar 

  43. Yu DH, Rong CY, Lu T, De Proft F, Liu SB (2018) Aromaticity study of Benzene-fused fulvene derivatives using the information-theoretic approach in density functional reactivity theory. Acta Phys-Chim Sin 34:639–649

    CAS  Google Scholar 

  44. Yu DH, Rong CY, Lu T, De Proft F, Liu SB (2018) Baird’s rule in substituted Fulvene derivatives: an information-theoretic study on excited-state aromaticity and antiaromaticity. ACS Omega 3:18370–18379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu DH, Stuyver T, Rong CY, Alonso M, Lu T, De Proft F, Geerlings P, Liu SB (2019) Global and local aromaticity of acenes from the information-theoretic approach in density functional reactivity theory. Phys Chem Chem Phys 21:18195–18210

    Article  CAS  PubMed  Google Scholar 

  46. Yu DH, Rong CY, Lu T, Geerlings P, De Proft F, Alonso M, Liu SB (2020) Switching between Hückel and Möbius aromaticity: a density functional theory and information-theoretic approach study. Phys Chem Chem Phys 22:4715–4730

    Article  CAS  PubMed  Google Scholar 

  47. Wu JY, Yu DH, Liu SY, Rong CY, Zhong AG, Chattaraj PK, Liu SB (2019) Is it possible to determine oxidation states for atoms in molecules using density-based quantities? An information-theoretic approach and conceptual density functional theory study. J Phys Chem A 123:6751–6760

    Article  CAS  PubMed  Google Scholar 

  48. Liu SB (2020) Homochirality originates from handedness of helices. J Phys Chem Lett 11:8690–8696

    Article  CAS  PubMed  Google Scholar 

  49. Liu SB (2021) Principle of chirality hierarchy in three-blade propeller systems. J Phys Chem Lett 12:8720–8725

    Article  CAS  PubMed  Google Scholar 

  50. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J Chem Phys 132:154104

    Article  PubMed  Google Scholar 

  51. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  PubMed  Google Scholar 

  52. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H (2016) Gaussian Inc 16, revision A.03. Gaussian Inc., Wallingford

  53. Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  54. NIST Standard Reference Database. See http://webbook.nist.gov/chemistry/. Accessed 21 Dec 2022

  55. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang WT (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang WT (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7:625–632

    Article  PubMed  PubMed Central  Google Scholar 

  57. Huang Y, Zhong AG, Yang QS, Liu SB (2011) Origin of anomeric effect: a density functional steric analysis. J Chem Phys 134:084103

    Article  PubMed  Google Scholar 

  58. Zhao DB, Rong CY, Jerkins S, Kirk SR, Yin DL, Liu SB (2013) Origin of the cis-effect: a density functional theory study of doubly substituted ethylenes. Acta Phys-Chim Sin 29:43–54

    Article  CAS  Google Scholar 

  59. Liu SB, Pedersen LG (2009) Estimation of molecular acidity via electrostatic potential at the nucleus and valence natural atomic orbitals. J Phys Chem A 113:3648–3655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu SB, Schauer C, Pedersen LG (2009) Molecular acidity: a quantitative conceptual density functional theory description. J Chem Phys 131:164107

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wang KD, He X, Rong CY, Zhong AG, Liu SB, Zhao DB (2022) On the origin and nature of internal methyl rotation barriers: an information-theoretic approach study. Theor Chem Acc 141:68

    Article  CAS  Google Scholar 

  62. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  63. Condon EU (1958) In: Handbook of Physics, edited by Condon EU, Odishaw H (McGraw-Hill, New York), pp 4−22

  64. Jackson JD (1975) In: Classical Electrodynamics, 2nd ed. (Wiley, New York), pp 60−62

Download references

Acknowledgements

It is a pleasure to dedicate this work to Professor Pratim Kumar Chattaraj on his 65th birthday. This work is supported by the start-up funding of Yunnan university and the Yunnan Fundamental Research Projects (Grant No. 202101AU070012).

Author information

Authors and Affiliations

Authors

Contributions

A.Z., S.L., and D.Z. contributed to conceptualization; C.L. and X.H. performed data curation; C.L. and X.H. carried out formal analysis; D.Z. contributed to funding acquisition; A.Z., S.L., and D.Z. performed project administration; A.Z., S.L., and D.Z. performed supervision; C.L. and X.H. performed writing—original draft; A.Z., S.L., and D.Z. performed writing—review and editing.

Corresponding authors

Correspondence to Aiguo Zhong, Shubin Liu or Dongbo Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 483 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, C., He, X., Zhong, A. et al. What dictates alkane isomerization? A combined density functional theory and information-theoretic approach study. Theor Chem Acc 142, 78 (2023). https://doi.org/10.1007/s00214-023-03014-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-03014-8

Keywords

Navigation