Skip to main content
Log in

Generalization of the local diabatization approach for propagating electronic degrees of freedom in nonadiabatic dynamics

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this Festschrift contribution in honor of Prof. Maurizio Persico, we present a systematic derivation and comprehensive assessment of several integrators for quantum–classical time-dependent Schrodinger (TD-SE) and Liouville (QCLE) equations. Our formalism is rooted in the basis set reprojection approach, but it naturally leads to a family of local diabatization (LD) integrators, including the one pioneered by Prof. Persico and co-workers. The formalism naturally accounts for trivial state crossing effects and helps solve related phenomena that often pose significant numerical problems in nonadiabatic molecular dynamics simulations. We adapt the LD-based methods for the QCLE integration. We generalize the symmetric splitting integrator proposed by one of us earlier and demonstrate how it can be applied to integrate both TD-SE and QCLE. Our analysis and computations suggest that the reprojection approach is critical for capturing correct qualitative dynamics in trivial crossing regimes, but the proper integration approach is still needed for high accuracy of calculations in general case. Our computations also reveal an interesting coherence discontinuity effect introduced by the LD approximation. We provide a detailed discussion of the algorithms and their implementation in the open-source Libra software and present their comprehensive assessment using several well-designed model problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chu W, Zheng Q, Prezhdo OV et al (2020) Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron-hole recombination. Sci Adv 6:eaaw7453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chu W, Saidi WA, Zhao J, Prezhdo OV (2020) Soft lattice and defect covalency rationalize tolerance of β-CsPbI3 perovskite solar cells to native defects. Angew Chem Int Ed 59:6435–6441

    Article  CAS  Google Scholar 

  3. Guo H, Chu W, Zheng Q, Zhao J (2020) Tuning the carrier lifetime in black phosphorene through family atom doping. J Phys Chem Lett 11:4662–4667

    Article  CAS  PubMed  Google Scholar 

  4. Akimov AV (2021) Excited state dynamics in monolayer black phosphorus revisited: accounting for many-body effects. J Chem Phys 155:134106

    Article  CAS  PubMed  Google Scholar 

  5. Grimaldi G, Crisp RW, ten Brinck S et al (2018) Hot-electron transfer in quantum-dot heterojunction films. Nat Commun 9:2310

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jiang X, Zheng Q, Lan Z et al (2021) Real-time GW-BSE investigations on spin-valley exciton dynamics in monolayer transition metal dichalcogenide. Sci Adv 7:3759

    Article  Google Scholar 

  7. Shi Y, Prezhdo OV, Zhao J, Saidi WA (2020) Iodine and sulfur vacancy cooperation promotes ultrafast charge extraction at MAPbI3/MoS2 interface. ACS Energy Lett 5:1346–1354

    Article  CAS  Google Scholar 

  8. Akimov AV, Asahi R, Jinnouchi R, Prezhdo OV (2015) What makes the photocatalytic CO2 reduction on N-doped Ta2O5 efficient: insights from nonadiabatic molecular dynamics. J Am Chem Soc 137:11517–11525

    Article  CAS  PubMed  Google Scholar 

  9. Cheng C, Fang W-H, Long R, Prezhdo OV (2021) Water splitting with a single-atom Cu/TiO2 photocatalyst: atomistic origin of high efficiency and proposed enhancement by spin selection. J Am Chem Soc Au 1:550–559

    CAS  Google Scholar 

  10. Niu X, Bai X, Zhou Z, Wang J (2020) Rational design and characterization of direct Z-scheme photocatalyst for overall water splitting from excited state dynamics simulations. ACS Catal 10:1976–1983

    Article  CAS  Google Scholar 

  11. Gumber S, Agrawal S, Prezhdo OV (2022) Excited state dynamics in dual-defects modified graphitic carbon nitride. J Phys Chem Lett 13:1033–1041

    Article  CAS  PubMed  Google Scholar 

  12. Nelson TR, Ondarse-Alvarez D, Oldani N et al (2018) Coherent exciton-vibrational dynamics and energy transfer in conjugated organics. Nat Commun 9:2316

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nelson T, Fernandez-Alberti S, Roitberg AE, Tretiak S (2017) Electronic delocalization, vibrational dynamics, and energy transfer in organic chromophores. J Phys Chem Lett 8:3020–3031

    Article  CAS  PubMed  Google Scholar 

  14. Andrea Rozzi C, Maria Falke S, Spallanzani N et al (2013) Quantum coherence controls the charge separation in a prototypical artificial light-harvesting system. Nat Commun 4:1602

    Article  Google Scholar 

  15. Feit MD, Fleck JA (1983) Solution of the Schrödinger equation by a spectral method II: vibrational energy levels of triatomic molecules. J Chem Phys 78:301–308

    Article  CAS  Google Scholar 

  16. Raab A, Worth GA, Meyer H-D, Cederbaum LS (1999) Molecular dynamics of pyrazine after excitation to the S2 electronic state using a realistic 24-mode model Hamiltonian. J Chem Phys 110:936–946

    Article  CAS  Google Scholar 

  17. Greene SM, Batista VS (2017) Tensor-train split-operator Fourier transform (TT-SOFT) method: multidimensional nonadiabatic quantum dynamics. J Chem Theory Comput 13:4034–4042

    Article  CAS  PubMed  Google Scholar 

  18. Gancewski M, Jóźwiak H, Quintas-Sánchez E et al (2021) Fully quantum calculations of O2–N2 scattering using a new potential energy surface: collisional perturbations of the oxygen 118 GHz fine structure line. J Chem Phys 155:124307

    Article  CAS  PubMed  Google Scholar 

  19. Smith B, Akimov AV (2020) Modeling nonadiabatic dynamics in condensed matter materials: some recent advances and applications. J Phys: Condens Matter 32:073001

    CAS  PubMed  Google Scholar 

  20. Wang L, Akimov A, Prezhdo OV (2016) Recent progress in surface hopping: 2011–2015. J Phys Chem Lett 7:2100–2112

    Article  CAS  PubMed  Google Scholar 

  21. Tully JC, Preston RK (1971) Trajectory surface hopping approach to nonadiabatic molecular collisions: the reaction of H+ with D2. J Chem Phys 55:562–572

    Article  CAS  Google Scholar 

  22. Tully JC (1990) Molecular dynamics with electronic transitions. J Chem Phys 93:1061–1071

    Article  CAS  Google Scholar 

  23. Drukker K (1999) Basics of surface hopping in mixed quantum/classical simulations. J Comput Phys 153:225–272

    Article  CAS  Google Scholar 

  24. Nelson TR, White AJ, Bjorgaard JA et al (2020) Non-adiabatic excited-state molecular dynamics: theory and applications for modeling photophysics in extended molecular materials. Chem Rev 120:2215–2287

    Article  CAS  PubMed  Google Scholar 

  25. Floß G, Saalfrank P (2015) The photoinduced E → Z isomerization of bisazobenzenes: a surface hopping molecular dynamics study. J Phys Chem A 119:5026–5037

    Article  PubMed  Google Scholar 

  26. Akimov AV (2016) Libra: An open-source “methodology discovery” library for quantum and classical dynamics simulations. J Comput Chem 37:1626–1649

    Article  CAS  PubMed  Google Scholar 

  27. Shakiba M, Smith B, Li W et al (2022) Libra: A modular software library for quantum nonadiabatic dynamics. Softw Impacts 14:100445

    Article  Google Scholar 

  28. Akimov AV, Prezhdo OV (2014) Advanced capabilities of the PYXAID program: integration schemes, decoherence effects, multiexcitonic states, and field-matter interaction. J Chem Theory Comput 10:789–804

    Article  CAS  PubMed  Google Scholar 

  29. Fernandez-Alberti S, Roitberg AE, Nelson T, Tretiak S (2012) Identification of unavoided crossings in nonadiabatic photoexcited dynamics involving multiple electronic states in polyatomic conjugated molecules. J Chem Phys 137:014512

    Article  PubMed  Google Scholar 

  30. Ryabinkin IG, Izmaylov AF (2017) Mixed quantum-classical dynamics using collective electronic variables: a better alternative to electronic friction theories. J Phys Chem Lett 8:440–444

    Article  CAS  PubMed  Google Scholar 

  31. Wang L, Prezhdo OV (2014) A simple solution to the trivial crossing problem in surface hopping. J Phys Chem Lett 5:713–719

    Article  CAS  PubMed  Google Scholar 

  32. Temen S, Akimov AV (2021) A simple solution to trivial crossings: a stochastic state tracking approach. J Phys Chem Lett 12:850–860

    Article  CAS  PubMed  Google Scholar 

  33. Granucci G, Persico M, Toniolo A (2001) Direct semiclassical simulation of photochemical processes with semiempirical wave functions. J Chem Phys 114:10608–10615

    Article  CAS  Google Scholar 

  34. Plasser F, Granucci G, Pittner J et al (2012) Surface hopping dynamics using a locally diabatic formalism: charge transfer in the ethylene dimer cation and excited state dynamics in the 2-pyridone dimer. J Chem Phys 137:22A514

    Article  PubMed  Google Scholar 

  35. Meek GA, Levine BG (2014) Evaluation of the time-derivative coupling for accurate electronic state transition probabilities from numerical simulations. J Phys Chem Lett 5:2351–2356

    Article  CAS  PubMed  Google Scholar 

  36. Shenvi N, Subotnik JE, Yang W (2011) Phase-corrected surface hopping: correcting the phase evolution of the electronic wavefunction. J Chem Phys 135:024101

    Article  PubMed  Google Scholar 

  37. Mai S, Marquetand P, González L (2018) Nonadiabatic dynamics: the SHARC approach. Wiley Interdiscip Rev Comput Mol Sci 8:e1370

    Article  PubMed  PubMed Central  Google Scholar 

  38. Akimov AV (2018) A simple phase correction makes a big difference in nonadiabatic molecular dynamics. J Phys Chem Lett 9:6096–6102

    Article  CAS  PubMed  Google Scholar 

  39. Smith B, Akimov AV (2019) A comparative analysis of surface hopping acceptance and decoherence algorithms within the neglect of back-reaction approximation. J Chem Phys 151:124107

    Article  PubMed  Google Scholar 

  40. Dutra M, Garashchuk S, Akimov AV (2023) The quantum trajectory-guided adaptive Gaussian methodology in the Libra software package. Int J Quantum Chem 123:e27078

    Article  CAS  Google Scholar 

  41. Mandal A, Yamijala SS, Huo P (2018) Quasi-diabatic representation for nonadiabatic dynamics propagation. J Chem Theory Comput 14:1828–1840

    Article  CAS  PubMed  Google Scholar 

  42. Akimov AV, Long R, Prezhdo OV (2014) Coherence penalty functional: A simple method for adding decoherence in ehrenfest dynamics. J Chem Phys 140:194107

    Article  PubMed  Google Scholar 

  43. Akimov AV (2022) Fundamentals of trajectory-based methods for nonadiabatic dynamics. In: Reference module in chemistry, molecular sciences and chemical engineering. Elsevier

  44. Mukamel S (1995) Principles of nonlinear optical spectroscopy. Oxford University Press, New York

    Google Scholar 

  45. Akimov AV, Shakiba M, Smith B, Dutra M, Sato K, Temen S, Li W, Sun X, Stippell L (2023). Quantum-Dynamics-Hub/libra-code: significant refactoring of the code, Local diabatization and more (v5.4.0). Zenodo. https://doi.org/10.5281/zenodo.7846986

  46. Verlet L (1967) Computer “Experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98–103

    Article  CAS  Google Scholar 

  47. Hack MD, Truhlar DG (2001) A natural decay of mixing algorithm for non-Born–Oppenheimer trajectories. J Chem Phys 114:9305–9314

    Article  CAS  Google Scholar 

  48. Zhu C, Nangia S, Jasper AW, Truhlar DG (2004) Coherent switching with decay of mixing: an improved treatment of electronic coherence for non-Born–Oppenheimer trajectories. J Chem Phys 121:7658–7670

    Article  CAS  PubMed  Google Scholar 

  49. Granucci G, Persico M, Zoccante A (2010) Including quantum decoherence in surface hopping. J Chem Phys 133:134111

    Article  PubMed  Google Scholar 

  50. Plasser F, Mai S, Fumanal M et al (2019) Strong influence of decoherence corrections and momentum rescaling in surface hopping dynamics of transition metal complexes. J Chem Theory Comput 15:5031–5045

    Article  CAS  PubMed  Google Scholar 

  51. Shakiba M, Akimov AV (2023) AkimovLab/Project_NAMD_Integrators: Project NAMD integrators (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.7659020

Download references

Acknowledgements

Support of computations is provided by the Center for Computational Research at the University at Buffalo.

Funding

This work was carried out with financial support from the National Science Foundation (Grant OAC-NSF-1931366).

Author information

Authors and Affiliations

Authors

Contributions

MS conducted calculations and data analysis, coded data analysis and visualization scripts, prepared figures, assembled electronic data repository, verified the code implementation; AVA implemented integrators in the Libra code, designed and guided the project, acquired funding. All authors wrote and reviewed the manuscript.

Corresponding author

Correspondence to Alexey V. Akimov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2011 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakiba, M., Akimov, A.V. Generalization of the local diabatization approach for propagating electronic degrees of freedom in nonadiabatic dynamics. Theor Chem Acc 142, 68 (2023). https://doi.org/10.1007/s00214-023-03007-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-03007-7

Keywords

Navigation