Skip to main content
Log in

A DFT investigation on transition metal (Co, Cr, Cu, Mn, Mo and Nb)-doped bismuth ferrite oxide (BiFeO3) for CO gas adsorption

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Using density functional theory, the structural and electronic configuration of transition metal atom (Co, Cr, Cu, Mn, Mo, and Nb)-doped BiFeO3(BFO) perovskite for adsorption of CO gas molecules has been studied in a systematic way. A detailed analysis of energy, geometry and an electronic configuration of transition metal atoms doped in A site of BFO perovskite structure towards CO adsorption is carried out. The CO gas molecule adsorption phenomenon on transition metal-doped BFO is investigated in terms of adsorption energy after geometry optimization, adsorption distance, charge density difference, and the spectrum of the density of states. Our results revealed that CO gas is chemisorbed on Mo-doped BiFeO3 perovskite structure. Also, calculation results indicate that CO preferably adsorbs on Mo-doped BiFeO3 with an adsorption energy of − 1.05 eV. Further results from the density of states plot (DOS) suggest that Mo-doped BFO (010) can be introduced as a promising candidate in chemiresistive gas sensing devices for detecting CO gas molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gholizadeh R, Yu YX (2015) N 2 O + CO reaction over Si- and Se-doped graphenes: An ab initio DFT study. Appl Surf Sci 357:1187–1195. https://doi.org/10.1016/j.apsusc.2015.09.163

    Article  CAS  Google Scholar 

  2. Rezaei-Sameti M, Samadi Jamil E (2016) The adsorption of CO molecule on pristine, As, B, BAs doped (4, 4) armchair AlNNTs: a computational study. J Nanostruct Chem 6(3):197–205. https://doi.org/10.1007/s40097-015-0183-9

    Article  CAS  Google Scholar 

  3. Gao H, Xu W, He H, Shi X, Zhang X, Ichi Tanaka K (2008) DRIFTS investigation and DFT calculation of the adsorption of CO on Pt/TiO2, Pt/CeO2 and FeOx/Pt/CeO2. Spectrochim Acta - Part A Mol Biomol Spectrosc. 71(4):1193–1198. https://doi.org/10.1016/j.saa.2008.03.036

    Article  CAS  Google Scholar 

  4. Bludský O, Silhan M, Nachtigall P, Bucko T, Benco L, Hafner J (2005) Theoretical investigation of CO interaction with copper sites in zeolites: Periodic DFT and hybrid quantum mechanical/interatomic potential function study. J Phys Chem B 109(19):9631–9638. https://doi.org/10.1021/jp0506538

    Article  CAS  PubMed  Google Scholar 

  5. Zhang D, Pang M, Wu J, Cao Y (2019) Experimental and density functional theory investigation of Pt-loaded titanium dioxide/molybdenum disulfide nanohybrid for SO2 gas sensing. New J Chem 43(12):4900–4907. https://doi.org/10.1039/c9nj00399a

    Article  CAS  Google Scholar 

  6. Vojkovic M et al (2017) Hydrogen-induced adsorption of carbon monoxide on the gold dimer cation: a joint experimental and DFT investigation. J Phys Chem A 121(23):4404–4411. https://doi.org/10.1021/acs.jpca.7b01564

    Article  CAS  PubMed  Google Scholar 

  7. Rubeš M, Grajciar L, Bludský O, Wiersum AD, Llewellyn PL, Nachtigall P (2012) Combined theoretical and experimental investigation of CO adsorption on coordinatively unsaturated sites in CuBTC MOF. ChemPhysChem 13(2):488–495. https://doi.org/10.1002/cphc.201100602

    Article  CAS  PubMed  Google Scholar 

  8. Nachtigall P, Bulánek R (2006) Theoretical investigation of site-specific characteristics of CO adsorption complexes in the Li+-FER zeolite. Appl Catal A Gen 307(1):118–127. https://doi.org/10.1016/j.apcata.2006.03.020

    Article  CAS  Google Scholar 

  9. Ouyang T, Qian Z, Ahuja R, Liu X (2018) First-principles investigation of CO adsorption on pristine, C-doped and N-vacancy defected hexagonal AlN nanosheets. Appl Surf Sci 439:196–201. https://doi.org/10.1016/j.apsusc.2018.01.040

    Article  CAS  Google Scholar 

  10. Beheshtian J, Baei MT, Peyghan AA (2012) Theoretical study of CO adsorption on the surface of BN, AlN, BP and AlP nanotubes. Surf Sci 606(11–12):981–985. https://doi.org/10.1016/j.susc.2012.02.019

    Article  CAS  Google Scholar 

  11. Yang S et al (2019) A DFT study of CO adsorption on the pristine, defective, In-doped and Sb-doped graphene and the effect of applied electric field. Appl Surf Sci 480:205–211. https://doi.org/10.1016/j.apsusc.2019.02.244

    Article  CAS  Google Scholar 

  12. Esrafili MD, Nematollahi P, Abdollahpour H (2016) A comparative DFT study on the CO oxidation reaction over Al- and Ge-embedded graphene as efficient metal-free catalysts. Appl Surf Sci 378:418–425. https://doi.org/10.1016/j.apsusc.2016.04.012

    Article  CAS  Google Scholar 

  13. Gajdoš M, Hafner J (2005) CO adsorption on Cu(1 1 1) and Cu(0 0 1) surfaces: improving site preference in DFT calculations. Surf Sci 590(2–3):117–126. https://doi.org/10.1016/j.susc.2005.04.047

    Article  CAS  Google Scholar 

  14. de Amorim RV, Batista KEA, Nagurniak GR, Orenha RP, Parreira RLT, Piotrowski MJ (2020) CO, NO, and SO adsorption on Ni nanoclusters: a DFT investigation. Dalt Trans 49(19):6407–6417. https://doi.org/10.1039/d0dt00288g

    Article  CAS  Google Scholar 

  15. Wu X, Senapati L, Nayak SK, Selloni A, Hajaligol M (2002) A density functional study of carbon monoxide adsorption on small cationic, neutral, and anionic gold clusters. J Chem Phys 117(8):4010–4015. https://doi.org/10.1063/1.1483067

    Article  CAS  Google Scholar 

  16. Nagarajan V, Chandiramouli R (2016) A DFT study on adsorption behaviour of CO on Co 3 O 4 nanostructures. Appl Surf Sci 385:113–121. https://doi.org/10.1016/j.apsusc.2016.05.085

    Article  CAS  Google Scholar 

  17. Orita H, Inada Y (2005) DFT investigation of CO adsorption on Pt(211) and Pt(311) surfaces from low to high coverage. J Phys Chem B 109(47):22469–22475. https://doi.org/10.1021/jp052583a

    Article  CAS  PubMed  Google Scholar 

  18. Zhao L et al (2013) Mechanism of CO adsorption on hexagonal WO3 (0 0 1) surface for gas sensing: a DFT study. Comput Mater Sci 79:691–697. https://doi.org/10.1016/j.commatsci.2013.07.046

    Article  CAS  Google Scholar 

  19. Yang M, Zhang Y, Huang S, Liu H, Wang P, Tian H (2011) Theoretical investigation of CO adsorption on TM-doped (MgO) 12 (TM = Ni, Pd, Pt) nanotubes. Appl Surf Sci 258(4):1429–1436. https://doi.org/10.1016/j.apsusc.2011.09.097

    Article  CAS  Google Scholar 

  20. Nagarajan V, Chandiramouli R (2015) DFT investigation on CO sensing characteristics of hexagonal and orthorhombic WO3 nanostructures. Superlattices Microstruct 78:22–39. https://doi.org/10.1016/j.spmi.2014.11.027

    Article  CAS  Google Scholar 

  21. Fan Y, Zhang J, Qiu Y, Zhu J, Zhang Y, Hu G (2017) A DFT study of transition metal (Fe Co, Ni, Cu, Ag, Au, Rh, Pd, Pt and Ir)-embedded monolayer MoS2 for gas adsorption. Comput Mater Sci 138:255–266. https://doi.org/10.1016/j.commatsci.2017.06.029

    Article  CAS  Google Scholar 

  22. Galán OAL, Carbajal-Franco G (2021) Energy profiles by DFT methods for CO and NO catalytic adsorption over ZnO surfaces. Catal Today 360(July):38–45. https://doi.org/10.1016/j.cattod.2019.08.003

    Article  CAS  Google Scholar 

  23. Nugraha et al (2017) Selectivity of CO and NO adsorption on ZnO (0002) surfaces: a DFT investigation. Appl Surf Sci 410(0002):373–382. https://doi.org/10.1016/j.apsusc.2017.03.009

    Article  CAS  Google Scholar 

  24. Lin L et al (2020) A periodic DFT study on adsorption of small molecules (CH4, CO, H2O, H2S, NH3) on the WO3 (001) surface-supported Au. Commun Theor Phys. https://doi.org/10.1088/1572-9494/ab690d

    Article  Google Scholar 

  25. Xu Q, Sobhan M, Anariba F, Ho JWC, Chen Z, Wu P (2014) Transition metal-doped BiFeO3 nanofibers: forecasting the conductivity limit. Phys Chem Chem Phys 16(42):23089–23095. https://doi.org/10.1039/c4cp03045a

    Article  CAS  PubMed  Google Scholar 

  26. D. Carranza-Celis et al. Control of Multiferroic properties in BiFeo 3 nanoparticles. doi: https://doi.org/10.1038/s41598-019-39517-3.

  27. Ahmed MA, Mansour SF, El-Dek SI, Abu-Abdeen M (2014) Conduction and magnetization improvement of BiFeO3 multiferroic nanoparticles by Ag+ doping. Mater Res Bull 49(1):352–359. https://doi.org/10.1016/j.materresbull.2013.09.011

    Article  CAS  Google Scholar 

  28. Li Q, Zhang W, Wang C, Ma J, Ning L, Fan H (2018) Ag modified bismuth ferrite nanospheres as a chlorine gas sensor. RSC Adv 8(58):33156–33163. https://doi.org/10.1039/C8RA06247A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sambare AA, Datta KP, Shirsat MD et al (2022) Adsorption of gas molecules (CO, CO22, NO, NO22, and CH44) on undoped and Ag-doped bismuth ferrite oxide (BFO) by DFT investigation. J Mater Res 37:4296–4311. https://doi.org/10.1557/s43578-022-00800-1

    Article  CAS  Google Scholar 

  30. Giannozzi P et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter. https://doi.org/10.1088/0953-8984/21/39/395502

    Article  PubMed  Google Scholar 

Download references

Funding

The authors did not receive any funding support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author prepared manuscript and performed calculations. Other authors contributed in analysing the DFT results and reviewing the manuscript.

Corresponding author

Correspondence to Amogh A. Sambare.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sambare, A.A., Pawar, R. & Shirsat, M. A DFT investigation on transition metal (Co, Cr, Cu, Mn, Mo and Nb)-doped bismuth ferrite oxide (BiFeO3) for CO gas adsorption. Theor Chem Acc 142, 61 (2023). https://doi.org/10.1007/s00214-023-03000-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-03000-0

Keywords

Navigation