Skip to main content
Log in

A structure and spectroscopy study about [16]cycloparaphenylene chiral molecule

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

An interesting chiral molecule with a double half-twisted π-electron system has been investigated with theoretical calculations. To investigate the geometry and electronic structure, the size of macrocyclic cavity, electrostatic potential (ESP) and density-of-states (DOS) were calculated. The multi-center bond order (MCBO) and AV1245 index were calculated to compare the aromaticity of phenylene groups. To investigate the spectroscopic properties, Raman, Raman Optical Activity (ROA), UV–Vis spectrum, fluorescence, CPL (circularly polarized luminescence) and ECD (electronic circular dichroism) spectra have been calculated and analyzed. The oscillator strengths, rotatory strengths and dissymmetry factor (glum) have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Brandt JR, Salerno F, Fuchter MJ (2017) The added value of small-molecule chirality in technological applications. Nat Rev Chem 1:0045

    Article  CAS  Google Scholar 

  2. Ma W, Xu L, Wang L, Xu C, Kuang H (2019) Chirality-based biosensors. Adv Funct Mater 29:1805512

    Article  Google Scholar 

  3. Glavin DP, Burton AS, Elsila JE, Aponte JC, Dworkin JP (2020) The Search for chiral asymmetry as a potential biosignature in our solar system. Chem Rev 120:4660–4689

    Article  CAS  PubMed  Google Scholar 

  4. Cintas P (2002) Chirality of living systems: a helping hand from crystals and oligopeptides. Angew Chem Int Ed 41:1139–1145

    Article  CAS  Google Scholar 

  5. Davankov V (2006) Chirality as an Inherent general property of matter. Chirality 18:459–461

    Article  CAS  PubMed  Google Scholar 

  6. Peluso P, Chankvetadze B (2022) Recognition in the domain of molecular chirality: from noncovalent interactions to separation of enantiomers. Chem Rev 122:13235–13400

    Article  CAS  PubMed  Google Scholar 

  7. Senthilkumar K, Kondratowicz M, Lis M, Chmielewski PJ, Cybińska J, Zafra JL, Casado J, Vives T, Crassous J, Favereau L, Stępień M (2019) Lemniscular [16]cycloparaphenylene: a radially conjugated figure-eight aromatic molecule. J Am Chem Soc 141:7421–7427

    Article  CAS  PubMed  Google Scholar 

  8. Palomo L, Favereau L, Senthilkumar K, Stępień M, Casado J, Ramírez FJ (2022) Simultaneous detection of circularly polarized luminescence and Raman optical activity in an organic molecular lemniscate. Angew Chem Int Ed 61:e202206976

    Article  CAS  Google Scholar 

  9. Schaub TA, Prantl EA, Kohn J, Bursch M, Marshall CR, Leonhardt EJ, Lovell TC, Zakharov LN, Brozek CK, Waldvogel SR, Grimme S, Jasti R (2020) Exploration of the solid-state sorption properties of shape-persistent macrocyclic nanocarbons as bulk materials and small aggregates. J Am Chem Soc 142:8763–8775

    Article  PubMed  Google Scholar 

  10. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  11. Casida ME, Jamorski C, Casida KC (1998) Molecular excitation energies to highlying bound states from time-dependent density-functional response theory: characte-rization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439–4449

    Article  CAS  Google Scholar 

  12. Frisch MJ et al. (2010) Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT.

  13. Dreuw A, Head-Gordon M (2005) Single-reference ab initio methods for the calculation of excited states of large molecules. Chem Rev 105:4009–4037

    Article  CAS  PubMed  Google Scholar 

  14. Barone V, Polimeno A (2007) Integrated computational strategies for UV/vis spectra of large molecules in solution. Chem Soc Rev 36:1724–1731

    Article  CAS  PubMed  Google Scholar 

  15. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and a continuum model of the solvent defifined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  PubMed  Google Scholar 

  16. Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:084106

    Article  PubMed  Google Scholar 

  17. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  PubMed  Google Scholar 

  18. Schaefer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian-basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577

    Article  CAS  Google Scholar 

  19. Schaefer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian-basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835

    Article  CAS  Google Scholar 

  20. Chung JH, Chai JD (2019) Electronic properties of möbius cyclacenes studied by thermally-assisted-occupation density functional theory. Sci Rep 9:2907

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  22. Giambiagi M, de Giambiagi MS, Mundim KC (1990) Definition of a multicenter bond index. Struct Chem 1:423–427

    Article  CAS  Google Scholar 

  23. Matito E (2016) An electronic aromaticity index for large rings. Phys Chem Chem Phys 18:11839–11846

    Article  CAS  PubMed  Google Scholar 

  24. Lu T, Manzetti S (2014) Wavefunction and reactivity study of benzo[a]pyrene diolepoxide and its enantiomeric forms. Struct Chem 25:1521–1533

    Article  CAS  Google Scholar 

  25. Liu Z, Lu T, Chen Q (2020) An sp-hybridized all-carboatomic ring, cyclo[18]carbon: electronic structure, electronic spectrum, and optical nonlinearity. Carbon 165:461–467

    Article  CAS  Google Scholar 

  26. Humphrey W, Dalke A, Schulten K (1996) VMD-visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  27. Berova N, Nakanishi K, Woody RW (2000) Circular Dichroism: Principles and Applications, 2nd ed.; Wiley-VCH:New York, NY, USA. pp. 196–197.

  28. Lunkley JL, Shirotani D, Yamanari K, Kaizaki S, Muller G (2008) Extraordinary circularly polarized luminescence activity exhibited by cesium tetrakis (3-heptafluoro-butylryl-(+)-camphorato) Eu(III) complexes in EtOH and CHCl3 solutions. J Am Chem Soc 130:13814–13815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks the High Performance Computation Laboratory of Changzhou University.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

BY and SH wrote the main manuscript text and prepared all the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Shuang Huang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Huang, S. A structure and spectroscopy study about [16]cycloparaphenylene chiral molecule. Theor Chem Acc 142, 59 (2023). https://doi.org/10.1007/s00214-023-02999-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-02999-6

Keywords

Navigation