Skip to main content

Advertisement

Log in

Steric effects from the perspective of Pauli energy

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Pauli energy, representing the portion of the kinetic energy that embodies all the effects from the antisymmetric requirement of the total wave function by the Pauli exclusion principle, is proposed as a density-based measure for one of the most widely used concepts in chemistry and physics, namely steric effects. Our main idea originates from the fact that in areas where there are steric effects, the repulsions originated from the Pauli exclusion principle are also present. Since the majority of these repulsions are quantified by the Pauli energy, steric effects can be measured by the Pauli energy as well. To validate the proposed idea, it is shown numerically that the Pauli energy expressions based on approximate kinetic energy density functionals (KEDs) can reproduce the experimental steric scales of different compounds. Indeed, although some KEDs do not predict the accurate results of kinetic energy, their description for steric effects from the perspective of Pauli energy may be desirable. On the other hand, there are also some KEDs that provide much better results than others, while their shortcomings can still be unveiled when they are used to quantitative description of steric effects using Pauli energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yadav VK (2016) Steric and stereoelectronic effects in organic chemistry. Springer, Singapore

    Google Scholar 

  2. Taft RW Jr (1956) Steric effect in organic chemistry. Wiley, New York

    Google Scholar 

  3. Pendás AM, Blanco MA, Francisco E (2009) J Comput Chem 30:98

    Article  PubMed  Google Scholar 

  4. Wong BM (2009) J Phys Chem C 113:21921

    Article  CAS  Google Scholar 

  5. Golder MR, Colwell CE, Wong BM, Zakharov LN, Zhen J, Jasti R (2016) J Am Chem Soc 138:6577

    Article  CAS  PubMed  Google Scholar 

  6. Khandy SA, Chai JD (2021) J Alloys Compd 850:156615

    Article  CAS  Google Scholar 

  7. Parr RG, Ayers PW, Nalewajski RF (2005) J Phys Chem A 109:3957

    Article  CAS  PubMed  Google Scholar 

  8. Shahbazian S, Zahedi M (2006) Found Chem 8:37

    Article  CAS  Google Scholar 

  9. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  10. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  11. Kitaura K, Morokuma K (1976) Int J Quantum Chem 10:325

    Article  CAS  Google Scholar 

  12. Ziegler T, Rauk A (1977) Theor Chim Acta 46:1

    Article  CAS  Google Scholar 

  13. Wu Q, Ayers PW, Zhang Y (2009) J Chem Phys 131:164112

    Article  PubMed  Google Scholar 

  14. Azar RJ, Head-Gordon M (2012) J Chem Phys 136:024103

    Article  PubMed  Google Scholar 

  15. Wu Q (2014) J Chem Phys 140:244109

    Article  PubMed  Google Scholar 

  16. Mao Y, Horn PR, Head-Gordon M (2017) Phys Chem Chem Phys 19:5944

    Article  CAS  PubMed  Google Scholar 

  17. Liu S (2007) J Chem Phys 126:244103

    Article  PubMed  Google Scholar 

  18. Pinter B, Fievez T, Bickelhaupt FM, Geerlings P, De Proft F (2012) Phys Chem Chem Phys 14:9846

    Article  CAS  PubMed  Google Scholar 

  19. Alipour M, Safari Z (2016) Phys Chem Chem Phys 18:17917

    Article  CAS  PubMed  Google Scholar 

  20. Alipour M, Taravat F (2019) Mol Phys 117:136

    Article  CAS  Google Scholar 

  21. Liu S, Zhao D, Rong C, Lu T, Liu S (2019) J Chem Phys 150:204106

    Article  PubMed  Google Scholar 

  22. Alipour M, Khorrami M (2020) Theor Chem Acc 139:171

    Article  CAS  Google Scholar 

  23. Alipour M, Kargar K (2020) J Comput Chem 41:1912

    Article  CAS  PubMed  Google Scholar 

  24. Alipour M, Fallahzadeh P (2021) Chem Phys Lett 785:139151

    Article  CAS  Google Scholar 

  25. Holas A, March NH (1991) Phys Rev A 44:5521

    Article  CAS  PubMed  Google Scholar 

  26. Weizsäcker CFV (1935) Z Phys 96:431

    Article  Google Scholar 

  27. Lee H, Lee C, Parr RG (1991) Phys Rev A 44:768

    Article  CAS  PubMed  Google Scholar 

  28. Cohen L (1979) J Chem Phys 70:788

    Article  CAS  Google Scholar 

  29. Cohen L (1984) J Chem Phys 80:4277

    Article  CAS  Google Scholar 

  30. Ayers PW, Parr RG, Nagy A (2002) Int J Quantum Chem 90:309

    Article  CAS  Google Scholar 

  31. Anderson JSM, Ayers PW, Rodriguez Hernandez JI (2010) J Phys Chem A 114:8884

    Article  CAS  PubMed  Google Scholar 

  32. Thomas LH (1927) Math Proc Camb Philos Soc 23:542

    Article  CAS  Google Scholar 

  33. Fermi E (1927) Rend Accad Naz Lincei 6:602

    CAS  Google Scholar 

  34. Kirzhnits DA (1957) Zh Eksperim iTeor Fiz 32:115

    Google Scholar 

  35. Gross EKU, Dreizler RM (1979) Phys Rev A 20:1798

    Article  CAS  Google Scholar 

  36. Govind N, Wang J, Guo H (1994) Phys Rev B 50:11175

    Article  CAS  Google Scholar 

  37. Yonei K (1967) J Phys Soc Jpn 22:1127

    Article  CAS  Google Scholar 

  38. Thakkar AJ, Pedersen WA (1990) Int J Quantum Chem 38:327

    Article  Google Scholar 

  39. Thakkar AJ (1992) Phys Rev A 46:6920

    Article  CAS  PubMed  Google Scholar 

  40. Pearson EW, Gordon RG (1985) J Chem Phys 82:881

    Article  CAS  Google Scholar 

  41. DePristo AE, Kress JD (1987) Phys Rev A 35:438

    Article  CAS  Google Scholar 

  42. Ou-Yang H, Levy M (1991) Int J Quantum Chem 40:379

    Article  Google Scholar 

  43. Ou-Yang H, Levy M (1990) Phys Rev A 42:155

    Article  CAS  Google Scholar 

  44. Becke AD (1986) J Chem Phys 85:7184

    Article  CAS  Google Scholar 

  45. Becke AD (1986) J Chem Phys 84:4524

    Article  CAS  Google Scholar 

  46. DePristo AE, Kress JD (1987) J Chem Phys 86:1425

    Article  CAS  Google Scholar 

  47. Perdew JP (1986) Phys Rev B 33:8822

    Article  CAS  Google Scholar 

  48. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  49. Acharya PK, Bartolotti LJ, Sears SB, Parr RG (1980) Proc Natl Acad Sci U S A 77:6978

  50. Gázquez JL, Robles J (1982) J Chem Phys 76:1467

    Article  Google Scholar 

  51. Brack M, Jennings BK, Chu YH (1976) Phys Lett B 65:1

    Article  Google Scholar 

  52. Hodges CH (1973) Can J Phys 51:1428

    Article  Google Scholar 

  53. Laricchia S, Constantin LA, Fabiano E, Della Sala F (2014) J Chem Theory Comput 10:164

    Article  CAS  PubMed  Google Scholar 

  54. Tsirelson V, Stash A (2002) Chem Phys Lett 351:142

    Article  CAS  Google Scholar 

  55. Tsirelson V, Stash A (2002) Acta Crystallogr B 58:780

    Article  PubMed  Google Scholar 

  56. Ayers PW (2005) J Chem Sci 117:441

    Article  CAS  Google Scholar 

  57. Tsirelson VG, Stash AI, Liu S (2010) J Chem Phys 133:114110

    Article  PubMed  Google Scholar 

  58. Astakhov AA, Tsirelson VG (2014) Chem Phys 435:49

    Article  CAS  Google Scholar 

  59. Ayers PW, Boyd RJ, Bultinck P, Caffarel M, Carbo-Dorca R, Causa M, Cioslowski J, Contreras-Garcia J, Cooper DL, Coppens P, Gatti C, Grabowsky S, Lazzeretti P, Macchi P, Martin Pendas A, Popelier PLA, Ruedenberg K, Rzepa H, Savin A, Sax A, Schwarz WHE, Shahbazian S, Silvi B, Sola M, Tsirelson V (2015) Comput and Theor Chem 1053:2

    Article  CAS  Google Scholar 

  60. Astakhov AA, Stash AI, Tsirelson VG (2016) Int J Quantum Chem 116:237

    Article  CAS  Google Scholar 

  61. Tsirelson V (2018) J Comput Chem 39:1029

    Article  CAS  PubMed  Google Scholar 

  62. Shteingolts SA, Stash AI, Tsirelson VG, Fayzullin RR (2021) Chem Eur J 27:7789

    Article  CAS  PubMed  Google Scholar 

  63. Chakraborty D, Ayers PW (2011) J Math Chem 49:1810

    Article  CAS  Google Scholar 

  64. Finzel K (2015) Int J Quantum Chem 115:1629

    Article  CAS  Google Scholar 

  65. Finzel K (2016) Int J Quantum Chem 116:1261

    Article  CAS  Google Scholar 

  66. Finzel K (2016) J Chem Phys 144:034108

    Article  PubMed  Google Scholar 

  67. Finzel K, Davidsson J, Abrikosov IA (2016) Int J Quantum Chem 116:1337

    Article  CAS  Google Scholar 

  68. Taft RW Jr (1952) J Am Chem Soc 74:2729

    Article  CAS  Google Scholar 

  69. Torrent-Sucarrat M, Liu S, De Proft F (2009) J Phys Chem A 113:3698

    Article  CAS  PubMed  Google Scholar 

  70. Frisch MJ et al (2013) Gaussian 09, revision D.01. Gaussian Inc., Wallingford

    Google Scholar 

  71. Lu T, Chen F (2012) J Comput Chem 33:580

    Article  PubMed  Google Scholar 

  72. Badenhoop JK, Weinhold F (1997) J Chem Phys 107:5406

    Article  CAS  Google Scholar 

  73. Bickelhaupt FM, Baerends EJ (2003) Angew Chem Int Ed 42:4183

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Computational resources from Shiraz University are gratefully acknowledged.

Funding

There are no funding resources to report for this work.

Author information

Authors and Affiliations

Authors

Contributions

MA was involved in conceptualization, formal analysis, investigation, methodology, project administration, resources, software, supervision, validation, writing—original draft, writing—review and editing. MA performed investigation, data curation, formal analysis, visualization.

Corresponding author

Correspondence to Mojtaba Alipour.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 201 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, M., Alipour, M. Steric effects from the perspective of Pauli energy. Theor Chem Acc 142, 54 (2023). https://doi.org/10.1007/s00214-023-02996-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-02996-9

Keywords

Navigation