Skip to main content
Log in

Structure-aromaticity-spectroscopy relationship in conjugated polymers

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this study, an effort has been made to analyze the aromaticity of oligomers of phenylenes and thiophenes, with the presence and absence of linkers using Nucleus-Independent Chemical Shift (NICS) as a descriptor. The relation between HOMO–LUMO gaps, reorganization and excitation energies with respective NICS values has been employed to develop a structure-aromaticity-conjugation spectroscopy relationship (SACSR). Results show that HOMO–LUMO gaps/excitation energies of various model systems exhibit linear relationships with the inverse of the NICS values, indicating the possible existence of the SACSR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Hückel E (1931) Quanstentheoretische Beiträge zum Benzolproblem. Z Phys 72:310–337

    Article  Google Scholar 

  2. Breslow R (1965) Aromatic character. Chem Eng News Arch 43:90–100

    Article  CAS  Google Scholar 

  3. Giri S, Roy DR, Duley S, Chakraborty A, Parthasarathi R, Elango M, Vijayaraj R, Subramanian V, Islas R, Merino G, Chattaraj PK (2010) Bonding, aromaticity, and structure of trigonal dianion metal clusters. J Comput Chem 31:1815–1821

    CAS  PubMed  Google Scholar 

  4. Chakraborty A, Giri S, Duley S, Anoop A, Bultinck P, Chattaraj PK (2011) Aromaticity in all-metal annular systems: the counter-ion effect. Phys Chem Chem Phys 13:14865–14878

    Article  CAS  PubMed  Google Scholar 

  5. Duley S, Giri S, Chakraborty A, Chattaraj PK (2009) Bonding, aromaticity and reactivity patterns in some all-metal and non-metal clusters. J Chem Sci 121:849–858

    Article  CAS  Google Scholar 

  6. Chattaraj PK, Roy DR, Elango M, Subramanian V (2006) Chemical reactivity descriptor based aromaticity indices applied to Al42− and Al44− systems. J Mol Struct (Thoechem) 759:109–110

    Article  CAS  Google Scholar 

  7. Baird NC (1972) Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3.pi.pi.* state of cyclic hydrocarbons. J Am Chem Soc 94:4941–4948

    Article  CAS  Google Scholar 

  8. Chen Z, King RB (2005) Spherical aromaticity: recent work on fullerenes, polyhedral boranes, and related structures. Chem Rev 105:3613–3642

    Article  CAS  PubMed  Google Scholar 

  9. Tai TB, Nguyen MT (2011) Enhanced stability by three-dimensional aromaticity of endohedrally doped clusters X10M0/– with X = Ge, Sn, Pb and M = Cu, Ag, Au. J Phys Chem A 115:9993–9999

    Article  CAS  Google Scholar 

  10. Qiu Z, Xie Z (2021) A strategy for selective catalytic B-H functionalization of o-carboranes. Acc Chem Res 54:4065–4079

    Article  CAS  PubMed  Google Scholar 

  11. Schleyer P, v. R. (2001) Introduction: aromaticity. Chem Rev 101:1115–1118

    Article  CAS  PubMed  Google Scholar 

  12. Krygowski TM, Cyrański MK (2001) Structural aspects of aromaticity. Chem Rev 101:1385–1420

    Article  CAS  PubMed  Google Scholar 

  13. Boldyrev AI, Wang L-S (2005) All-metal aromaticity and antiaromaticity. Chem Rev 105:3716–3757

    Article  CAS  PubMed  Google Scholar 

  14. De Proft F, Geerlings P (2001) Conceptual and computational DFT in the study of aromaticity. Chem Rev 101:1451–1464

    Article  PubMed  Google Scholar 

  15. Balaban AT, Oniciu DC, Katritzky AR (2004) Aromaticity as a cornerstone of heterocyclic chemistry. Chem Rev 104:2777–2812

    Article  CAS  PubMed  Google Scholar 

  16. Krygowski TM, Szatylowicz H, Stasyuk OA, Dominikowska J, Palusiak M (2014) Aromaticity from the viewpoint of molecular geometry: application to planar systems. Chem Rev 114:6383–6422

    Article  CAS  PubMed  Google Scholar 

  17. Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer P, v. R. (2005) Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev 105:3842–3888

    Article  CAS  PubMed  Google Scholar 

  18. Kertesz M, Choi CH, Yang S (2005) Conjugated polymers and aromaticity. Chem Rev 105:3448–3481

    Article  CAS  PubMed  Google Scholar 

  19. Nyulászi L (2001) Aromaticity of phosphorus heterocycles. Chem Rev 101:1229–1246

    Article  PubMed  Google Scholar 

  20. Schleyer PVR, Wu JI, Cossío FP, Fernández I (2014) Aromaticity in transition structures. Chem Soc Rev 43:4909–4921

    Article  CAS  PubMed  Google Scholar 

  21. Bühl M, Hirsch A (2001) Spherical aromaticity of fullerenes. Chem Rev 101:1153–1184

    Article  PubMed  Google Scholar 

  22. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874

    Article  CAS  PubMed  Google Scholar 

  23. Rosenberg M, Dahlstrand C, Kilså K, Ottosson H (2014) Excited state aromaticity and antiaromaticity: opportunities for photophysical and photochemical rationalizations. Chem Rev 114:5379–5425

    Article  CAS  PubMed  Google Scholar 

  24. Sung YM, Oh J, Cha W-Y, Kim W, Lim JM, Yoon M-C, Kim D (2017) Control and switching of aromaticity in various all-aza-expanded porphyrins: spectroscopic and theoretical analyses. Chem Rev 117:2257–2312

    Article  CAS  PubMed  Google Scholar 

  25. Solà M (2022) Aromaticity rules. Nat Chem 14:585–590

    Article  PubMed  Google Scholar 

  26. Ouyang G, Ji L, Jiang Y, Würthner F, Liu M (2020) Self-assembled Möbius strips with controlled helicity. Nat Commun 11:5910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Walba DM, Richards RM, Haltiwanger RC (1982) Total synthesis of the first molecular Moebius strip. J Am Chem Soc 104:3219–3221

    Article  CAS  Google Scholar 

  28. Zhu C, Yang C, Wang Y, Lin G, Yang Y, Wang X, Zhu J, Chen X, Lu X, Liu G, Xia H (2016) CCCCC pentadentate chelates with planar Möbius aromaticity and unique properties. Sci Adv 2:e1601031

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mauksch M, Tsogoeva SB (2010) Demonstration of “Möbius” aromaticity in planar metallacycles. Chem A Eur J 16:7843–7851

    Article  CAS  Google Scholar 

  30. Yoon ZS, Osuka A, Kim D (2009) Möbius aromaticity and antiaromaticity in expanded porphyrins. Nat Chem 1:113–122

    Article  CAS  PubMed  Google Scholar 

  31. Luo Z, Yang X, Cai K, Fu X, Zhang D, Ma Y, Zhao D (2020) Toward Möbius and tubular cyclopolyarene nanorings via arylbutadiyne macrocycles. Angew Chem Int Ed 59:14854–14860

    Article  CAS  Google Scholar 

  32. Wang E, He Z, Zhao E, Meng L, Schütt C, Lam JWY, Sung HHY, Williams ID, Huang X, Herges R, Tang BZ (2015) Aggregation-induced-emission-active macrocycle exhibiting analogous triply and singly twisted möbius topologies. Chem A Eur J 21:11707–11711

    Article  CAS  Google Scholar 

  33. Jiang X, Laffoon JD, Chen D, Pérez-Estrada S, Danis AS, Rodríguez-López J, Garcia-Garibay MA, Zhu J, Moore JS (2020) Kinetic control in the synthesis of a Möbius Tris((ethynyl)[5]helicene) macrocycle using alkyne metathesis. J Am Chem Soc 142:6493–6498

    Article  CAS  PubMed  Google Scholar 

  34. Pacholska-Dudziak E, Skonieczny J, Pawlicki M, Szterenberg L, Ciunik Z, Latos-Grażyński L (2008) Palladium vacataporphyrin reveals conformational rearrangements involving Hückel and Möbius macrocyclic topologies. J Am Chem Soc 130:6182–6195

    Article  CAS  PubMed  Google Scholar 

  35. Aihara J-I, Horibe H (2009) Macrocyclic aromaticity in Hückel and Möbius conformers of porphyrinoids. Org Biomol Chem 7:1939–1943

    Article  CAS  PubMed  Google Scholar 

  36. Rzepa HS (2005) Möbius aromaticity and delocalization. Chem Rev 105:3697–3715

    Article  CAS  PubMed  Google Scholar 

  37. Popov IA, Pan F-X, You X-R, Li L-J, Matito E, Liu C, Zhai H-J, Sun Z-M, Boldyrev AI (2016) Peculiar all-metal σ-aromaticity of the [Au2Sb16]4− anion in the solid state. Angew Chem Int Ed 55:15344–15346

    Article  CAS  Google Scholar 

  38. Zubarev DY, Averkiev BB, Zhai H-J, Wang L-S, Boldyrev AI (2008) Aromaticity and antiaromaticity in transition-metal systems. Phys Chem Chem Phys 10:257–267

    Article  CAS  PubMed  Google Scholar 

  39. Chattaraj PK, Roy DR, Elango M, Subramanian V (2005) Stability and reactivity of all-metal aromatic and antiaromatic systems in light of the principles of maximum hardness and minimum polarizability. J Phys Chem A 109:9590–9597

    Article  CAS  PubMed  Google Scholar 

  40. Popov IA, Starikova AA, Steglenko DV, Boldyrev AI (2018) Usefulness of the σ-aromaticity and σ-antiaromaticity concepts for clusters and solid-state compounds. Chem A Eur J 24:292–305

    Article  CAS  Google Scholar 

  41. Ueda M, Jorner K, Sung YM, Mori T, Xiao Q, Kim D, Ottosson H, Aida T, Itoh Y (2017) Energetics of Baird aromaticity supported by inversion of photoexcited chiral [4n]annulene derivatives. Nat Commun 8:346

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jun-ichi A (1978) Aromaticity-based theory of pericyclic reactions. Bull Chem Soc Jpn 51:1788–1792

    Article  Google Scholar 

  43. Karadakov PB (2008) Aromaticity and antiaromaticity in the low-lying electronic states of cyclooctatetraene. J Phys Chem A 112:12707–12713

    Article  CAS  PubMed  Google Scholar 

  44. Feixas F, Vandenbussche J, Bultinck P, Matito E, Solà M (2011) Electron delocalization and aromaticity in low-lying excited states of archetypal organic compounds. Phys Chem Chem Phys 13:20690–20703

    Article  CAS  PubMed  Google Scholar 

  45. Karadakov PB (2008) Ground- and excited-state aromaticity and antiaromaticity in benzene and cyclobutadiene. J Phys Chem A 112:7303–7309

    Article  CAS  PubMed  Google Scholar 

  46. El Bakouri O, Smith JR, Ottosson H (2020) Strategies for design of potential singlet fission chromophores utilizing a combination of ground-state and excited-state aromaticity rules. J Am Chem Soc 142:5602–5617

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lin L, Zhu J (2022) Computational predictions of adaptive aromaticity for the design of singlet fission materials. Inorganic Chem Front 9:914–924

    Article  CAS  Google Scholar 

  48. Mitchell RH (2001) Measuring Aromaticity by NMR. Chem Rev 101:1301–1316

    Article  CAS  PubMed  Google Scholar 

  49. Bredas JL (1985) Bipolarons in doped conjugated polymers: a critical comparison between theoretical results and experimental data. Mol Cryst Liq Cryst 118:49–56

    Article  CAS  Google Scholar 

  50. Bredas JL (1987) Theoretical design of polymeric conductors. Synth Met 17:115–121

    Article  CAS  Google Scholar 

  51. Zhou Z, Parr RG, Garst F, J. (1988) Absolute hardness as a measure of aromaticity. Tetrahedron Lett 29:4843–4846

    Article  CAS  Google Scholar 

  52. Zhou Z, Parr RG (1989) New measures of aromaticity: absolute hardness and relative hardness. J Am Chem Soc 111:7371–7379

    Article  CAS  Google Scholar 

  53. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity Index. Chem Rev 106:2065–2091

    Article  CAS  PubMed  Google Scholar 

  54. Solà, M. 2019. Connecting and combining rules of aromaticity. Towards a unified theory of aromaticity. WIREs Computational Molecular Science. 9:e1404.

  55. He X, Yu D, Wu J, Wang B, Rong C, Chattaraj PK, Liu S (2020) Towards understanding metal aromaticity in different spin states: a density functional theory and information-theoretic approach analysis. Chem Phys Lett 761:138065

    Article  CAS  Google Scholar 

  56. Yu D, Rong C, Lu T, Chattaraj PK, De Proft F, Liu S (2017) Aromaticity and antiaromaticity of substituted fulvene derivatives: perspectives from the information-theoretic approach in density functional reactivity theory. Phys Chem Chem Phys 19:18635–18645

    Article  CAS  PubMed  Google Scholar 

  57. Schleyer PRV, Jiao H (1996) What is aromaticity? Pure Appl Chem 68:209–218

    Article  CAS  Google Scholar 

  58. Fowler PW, Steiner E, Havenith RWA, Jenneskens LW (2004) Current density, chemical shifts and aromaticity. Magn Reson Chem 42:S68–S78

    Article  CAS  PubMed  Google Scholar 

  59. Oh J, Sung YM, Hong Y, Kim D (2018) Spectroscopic diagnosis of excited-state aromaticity: capturing electronic structures and conformations upon aromaticity reversal. Acc Chem Res 51:1349–1358

    Article  CAS  PubMed  Google Scholar 

  60. Karadakov PB, Di M, Cooper DL (2020) Excited-state aromaticity reversals in Möbius annulenes. J Phys Chem A 124:9611–9616

    Article  CAS  PubMed  Google Scholar 

  61. Kim J, Oh J, Osuka A, Kim D (2022) Porphyrinoids, a unique platform for exploring excited-state aromaticity. Chem Soc Rev 51:268–292

    Article  CAS  PubMed  Google Scholar 

  62. Gershoni-Poranne R, Rahalkar AP, Stanger A (2018) The predictive power of aromaticity: quantitative correlation between aromaticity and ionization potentials and HOMO–LUMO gaps in oligomers of benzene, pyrrole, furan, and thiophene. Phys Chem Chem Phys 20:14808–14817

    Article  CAS  PubMed  Google Scholar 

  63. Stuyver T, Perrin M, Geerlings P, De Proft F, Alonso M (2018) Conductance switching in expanded porphyrins through aromaticity and topology changes. J Am Chem Soc 140:1313–1326

    Article  CAS  PubMed  Google Scholar 

  64. Brédas JL (1985) Relationship between band gap and bond length alternation in organic conjugated polymers. J Chem Phys 82:3808–3811

    Article  Google Scholar 

  65. Shirai S, Iwata S, Tani T, Inagaki S (2011) Ab initio studies of aromatic excimers using multiconfiguration quasi-degenerate perturbation theory. J Phys Chem A 115:7687–7699

    Article  CAS  PubMed  Google Scholar 

  66. Mohanambe L, Vasudevan S (2006) Aromatic molecules in restricted geometries: pyrene excimer formation in an anchored bilayer. J Phys Chem B 110:14345–14354

    Article  CAS  PubMed  Google Scholar 

  67. Diaz-Andres A, Casanova D (2021) Benzene excimer and excited multimers: electronic character, interaction nature, and aromaticity. J Phys Chem Lett 12:7400–7408

    Article  CAS  PubMed  Google Scholar 

  68. Bultinck P, Fias S, Ponec R (2006) Local aromaticity in polycyclic aromatic hydrocarbons: electron delocalization versus magnetic indices. Chem A Eur J. 12:8813–8818

    Article  CAS  Google Scholar 

  69. Bultinck P, Ponec R, Van Damme S (2005) Multicenter bond indices as a new measure of aromaticity in polycyclic aromatic hydrocarbons. J Phys Org Chem 18:706–718

    Article  CAS  Google Scholar 

  70. Bultinck P, Ponec R, Carbó-Dorca R (2007) Aromaticity in linear polyacenes: generalized population analysis and molecular quantum similarity approach. J Comput Chem 28:152–160

    Article  CAS  PubMed  Google Scholar 

  71. Stanger A, Monaco G, Zanasi R (2020) NICS-XY-scan predictions of local, semi-global, and global ring currents in annulated pentalene and s-indacene cores compared to first-principles current density maps. ChemPhysChem 21:65–82

    Article  CAS  PubMed  Google Scholar 

  72. Gershoni-Poranne R, Stanger A (2014) The NICS-XY-scan: identification of local and global ring currents in multi-ring systems. Chem A Eur J 20:5673–5688

    Article  CAS  Google Scholar 

  73. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  74. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  75. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  76. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  77. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theoret Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  78. Stanger A (2011) Comment on “The electron density vs. NICS scan: a new approach to assess aromaticity in molecules with different ring sizes” by C. Foroutan-Nejad, S. Shahbazian and P. Rashidi-Ranjbar, Phys. Chem. Chem. Phys., 2010, 12, 12630: is there a connection between electron densities at the ring critical points and NICS? Phys Chem Chem Phys 13:12652–12654

    Article  CAS  PubMed  Google Scholar 

  79. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr, JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Rev. A.03. Wallingford, CT

  80. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  PubMed  Google Scholar 

  81. Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109:8218–8224

    Article  CAS  Google Scholar 

  82. Van Caillie C, Amos RD (1999) Geometric derivatives of excitation energies using SCF and DFT. Chem Phys Lett 308:249–255

    Article  Google Scholar 

  83. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439–4449

    Article  CAS  Google Scholar 

  84. Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron transfer. I. J Chem Phys 24:966–978

    Article  CAS  Google Scholar 

  85. Marcus RA (1957) On the theory of oxidation-reduction reactions involving electron transfer. II. Applications to data on the rates of isotopic exchange reactions. J Chem Phys 26:867–871

    Article  CAS  Google Scholar 

  86. Marcus RA (1957) On the theory of oxidation-reduction reactions involving electron transfer. III. Applications to data on the rates of organic redox reactions. J Chem Phys 26:872–877

    Article  CAS  Google Scholar 

  87. Marcus RA (1963) On the theory of oxidation—reduction reactions involving electron transfer. V. comparison and properties of electrochemical and chemical rate constants1. J Phys Chem 67:853–857

    Article  CAS  Google Scholar 

  88. Marcus RA (1965) On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J Chem Phys 43:679–701

    Article  CAS  Google Scholar 

  89. Marcus RA (1964) Chemical and electrochemical electron-transfer theory. Annu Rev Phys Chem 15:155–196

    Article  CAS  Google Scholar 

  90. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Rev Bioenerget 811:265–322

    CAS  Google Scholar 

  91. Hush NS (1958) Adiabatic rate processes at electrodes. I. Energy-charge relationships. J Chem Phys 28:962–972

    Article  CAS  Google Scholar 

  92. Hush NS (1999) Electron transfer in retrospect and prospect 1: adiabatic electrode processes. J Electroanal Chem 470:170–195

    Article  CAS  Google Scholar 

  93. Dennington RK, Todd A, Millam JM (2016) GaussView. Version 6.0.16 Ed., Semichem Inc., Shawnee Mission, KS

  94. (2016) Origin Pro. Version 2016 Ed., OriginLab Corporation, Northampton, MA, USA

  95. Schleyer PVR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJR (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318

    Article  CAS  PubMed  Google Scholar 

  96. Bredas JL, Silbey R, Boudreaux DS, Chance RR (1983) Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole. J Am Chem Soc 105:6555–6559

    Article  CAS  Google Scholar 

  97. Zade SS, Bendikov M (2006) From oligomers to polymer: convergence in the HOMO−LUMO gaps of conjugated oligomers. Org Lett 8:5243–5246

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors dedicate this contribution to Prof. Pratim Kumar Chattaraj on his 65th Birthday. The authors (MK, PS, and VS) acknowledge CSIR-CLRI and CSIR-4PI for providing the supercomputing facility. The authors thank the anonymous reviewers for their valuable comments and suggestions. MK gratefully acknowledges the Council of Scientific and Industrial Research (CSIR) for the CSIR-SRF fellowship (Grant No.: 31/006(0470)/2020-EMR-I, dated 12/10/2020). CSIR-CLRI Communication No.: 1820.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Masiyappan Karuppusamy and Shyam Vinod Kumar Panneer have carried out the calculations and analyzed the results with equal contributions to the manuscript. Abigail Jennifer G and Elumalai Varathan have contributed to the analysis of the results and preparation of the main manuscript text. Mahesh Kumar Ravva has contributed to the design of the work and critical discussions relevant to the intellectual content of the manuscript. Venkatesan Subramanian conceived the research problem, calculation methods and contributed to the overall preparation of the manuscript. All authors reviewed and gave approval to the final version of the manuscript.

Corresponding author

Correspondence to Venkatesan Subramanian.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6747 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karuppusamy, M., Panneer, S.V.K., Jennifer G, A. et al. Structure-aromaticity-spectroscopy relationship in conjugated polymers. Theor Chem Acc 142, 51 (2023). https://doi.org/10.1007/s00214-023-02989-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-02989-8

Keywords

Navigation