Skip to main content

Advertisement

Log in

Designing dithiolene and bis(iminothiolato)-based 1D metal-organic-frameworks for electrocatalytic hydrogen evolution reaction

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Hydrogen is considered as one of the most important clean and renewable energy resources to get rid of carbon-based fuels and to solve the problem of environmental hazzards caused for using fossil fuels. Hence, the large-scale production of hydrogen by water splitting through hydrogen evolution reaction (HER) demands inexpensive and efficient electrocatalysts to replace the scarce and expensive noble metal-based catalysts. In this work, using the density functional theory (DFT)-based computations, we have considered a family of one dimensional (1D) metal organic frameworks (MOFs), namely TM–dithiolene (TM–BTT), and TM–bis(iminothiolato) (TM–BIT), consisting of benzene-1,2,4,5-tetrathiolate (BTT) and benzene-bis(iminothiolato) (BIT) organic ligands, respectively, and a family of first row transition metals (TM = Mn, Fe, Co, and Ni), to find their catalytic activity toward HER. Using the Gibbs free energy for the adsorption of atomic hydrogen ( \(\mathrm {\Delta {\textit{G}}_{H^{*}}}\)) as the key descriptor, we reached to the conclusion that Ni–bis(iminothiolato) MOF exhibits better catalytic activity toward HER over all other investigated 1D-MOFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chu S, Cui Y, Liu N (2017) The path towards sustainable energy. Nat Mater 16:16. https://doi.org/10.1038/nmat4834

    Article  CAS  Google Scholar 

  2. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19. https://doi.org/10.1038/nchem.2085

    Article  CAS  PubMed  Google Scholar 

  3. Kamat PV (2008) Quantum dot solar cells semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737. https://doi.org/10.1021/jp806791s

    Article  CAS  Google Scholar 

  4. Sarkar S, Pal S, Sarkar P (2012) Electronic structure and band gap engineering of cdte semiconductor nanowires. J Mater Chem 22:10716. https://doi.org/10.1039/C2JM16810C

    Article  CAS  Google Scholar 

  5. Rajbanshi B, Kar M, Sarkar P, Sarkar P (2017) Phosphorene quantum dot-fullerene nanocomposites for solar energy conversion: An unexplored inorganic-organic nanohybrid with novel photovoltaic properties. Chem Phys Lett 685:16. https://doi.org/10.1016/j.cplett.2017.07.033

    Article  CAS  Google Scholar 

  6. Sarkar R, Kar M, Habib M, Zhou G, Frauenheim T, Sarkar P, Pal S, Prezhdo OV (2021) Common defects accelerate charge separation and reduce recombination in CNT/molecule composites: atomistic quantum dynamics. J Am Chem Soc 143:6649. https://doi.org/10.1021/jacs.1c02325

    Article  CAS  PubMed  Google Scholar 

  7. Rajbanshi B, Sarkar P (2016) Optimizing the photovoltaic properties of CDTE quantum dot porphyrin nanocomposites: a theoretical study. J Phys Chem C 120:17878. https://doi.org/10.1021/acs.jpcc.6b04662

    Article  CAS  Google Scholar 

  8. Das P, Ball B, Sarkar P (2022) Theoretical investigation of a tetrazine based covalent organic framework as a promising anode material for sodium/calcium ion batteries. Phys Chem Chem Phys 24:21729. https://doi.org/10.1039/D2CP02852B

    Article  CAS  PubMed  Google Scholar 

  9. Ball B, Chakravarty C, Sarkar P (2019) Two-dimensional covalent triazine framework as a promising anode material for Li-ion batteries. J Phys Chem C 123:30155. https://doi.org/10.1021/acs.jpcc.9b09268

    Article  CAS  Google Scholar 

  10. Ball B, Das P, Sarkar P (2021) Molybdenum atom-mediated salphen-based covalent organic framework as a promising electrocatalyst for the nitrogen reduction reaction: A first principles study. J Phys Chem C 125:26061. https://doi.org/10.1021/acs.jpcc.1c08779

    Article  CAS  Google Scholar 

  11. Roy P, Pramanik A, Sarkar P (2021) Graphitic carbon nitride sheet supported single-atom metal free photocatalyst for oxygen reduction reaction: A first-principles analysis. J Phys Chem Lett 12:2788. https://doi.org/10.1021/acs.jpclett.1c00421

    Article  CAS  PubMed  Google Scholar 

  12. Ball B, Chakravarty C, Sarkar P (2020) Silicon and phosphorus Co-doped bipyridine-linked covalent triazine framework as a promising metal-free catalyst for hydrogen evolution reaction: a theoretical investigation. J Phys Chem Lett 11:1542. https://doi.org/10.1021/acs.jpclett.9b03876

    Article  CAS  PubMed  Google Scholar 

  13. Bhunia S, Bhunia K, Patra BC, Das SK, Pradhan D, Bhaumik A, Pradhan A, Bhattacharya S (2018) Efficacious electrochemical oxygen evolution from a novel Co(II) porphyrin/pyrene-based conjugated microporous polymer. ACS Appl Mater Interfaces 11:1520. https://doi.org/10.1021/acsami.8b20142

    Article  CAS  PubMed  Google Scholar 

  14. Sun Y, Xue Z, Liu Q, Jia Y, Li Y, Liu K, Lin Y, Liu M, Li G, Su CY (2021) Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed ru for efficient hydrogen evolution. Nat Commun 12:1. https://doi.org/10.1038/s41467-021-21595-5

    Article  CAS  Google Scholar 

  15. Wang J, Fan Y, Qi S, Li W, Zhao M (2020) HER/OER or OER/ORR catalytic activity of two-dimensional \(\rm TM_{3}(HITP)_{2} \) with TM = Fe-Zn. J Phys Chem C 124:9350. https://doi.org/10.1021/acs.jpcc.0c01143

    Article  CAS  Google Scholar 

  16. Clough AJ, Yoo JW, Mecklenburg MH, Marinescu SC (2015) Two-dimensional metal organic surfaces for efficient hydrogen evolution from water. J Am Chem Soc 137:118. https://doi.org/10.1021/ja5116937

    Article  CAS  PubMed  Google Scholar 

  17. Song X, Wang J, Qi S, Fan Y, Li W, Zhao M (2019) electrocatalytic activity of bis(iminothiolato) nickel monolayer for overall water splitting. J Phys Chem C 123:25651. https://doi.org/10.1021/acs.jpcc.9b06669

    Article  CAS  Google Scholar 

  18. Liu J, Yin H, Liu P, Chen S, Yin S, Wang W, Zhao H, Wang Y (2019) Theoretical understanding of electrocatalytic hydrogen production performance by low-dimensional metal organic frameworks on the basis of resonant charge-transfer mechanisms. J Phys Chem Lett 10:6955. https://doi.org/10.1021/acs.jpclett.9b02729

    Article  CAS  PubMed  Google Scholar 

  19. Zaman N, Noor T, Iqbal N (2021) Recent advances in the metal-organic framework-based electrocatalysts for the hydrogen evolution reaction in water splitting: a review. RSC Adv 11:21904. https://doi.org/10.1039/D1RA02240G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun X, Wu KH, Sakamoto R, Kusamoto T, Maeda H, Nishihara H (2017) Conducting \(\pi \)-conjugated bis(iminothiolato) nickel nanosheet. Chem Lett 46:1072. https://doi.org/10.1246/cl.170382

    Article  CAS  Google Scholar 

  21. Wang Y, Liu X, Liu J, Al-Mamun M, Wee-Chung Liew A, Yin H, Wen W, Zhong YL, Liu P, Zhao H (2018) Electrolyte effect on electrocatalytic hydrogen evolution performance of one-dimensional cobalt-dithiolene metal-organic frameworks: a theoretical perspective. ACS Appl Energy Mater 1:1688. https://doi.org/10.1021/acsaem.8b00174

    Article  CAS  Google Scholar 

  22. Downes CA, Marinescu SC (2015) Efficient electrochemical and photoelectrochemical \(\rm H_{2} \) production from water by a cobalt dithiolene one-dimensional metal-organic surface. J Am Chem Soc 137:13740. https://doi.org/10.1021/jacs.5b07020

    Article  CAS  PubMed  Google Scholar 

  23. Downes CA, Marinescu SC (2016) One dimensional metal dithiolene (M = Ni, Fe, Zn) coordination polymers for the hydrogen evolution reaction. Dalton Trans 45:19311. https://doi.org/10.1039/C6DT03257E

    Article  CAS  PubMed  Google Scholar 

  24. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  25. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  26. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  28. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  29. Gao G, O’Mullane AP, Du A (2017) 2D mxenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal 7:494. https://doi.org/10.1021/acscatal.6b02754

    Article  CAS  Google Scholar 

  30. Chakravarty C, Mandal B, Sarkar P (2019) Bis(iminothiolato)-based one-dimensional metal organic framework: robust bipolar magnetic semiconductor with reversal of spin polarization. J Phys Chem C 124:37. https://doi.org/10.1021/acs.jpcc.9b08456

    Article  CAS  Google Scholar 

  31. Ray K, Begum A, Weyhermüller T, Piligkos S, Van Slageren J, Neese F, Wieghardt K (2005) The electronic structure of the isoelectronic, square planar complexes \([Fe^{II}(L)_{2}]^{2-}\) and \([Co^{III}(L^{Bu})_{2}]^{-}\)\((L^{2-} \rm and (L^{Bu})^{2-} = \rm {benzene-1, 2-dithiolates})\): An experimental and density functional theoretical study. J Am Chem Soc 127:4403. https://doi.org/10.1021/ja042803i

    Article  CAS  PubMed  Google Scholar 

  32. Luiz Benedito F, Petrenko T, Bill E, Weyhermuller T, Wieghardt K (2009) Square planar bis \(\{\)3, 6-bis (trimethylsilyl) benzene-1, 2-dithiolato\(\}\) metal complexes of \(\rm Cr, Co^{III}\) and Rh: an experimental and density functional theoretical study. Inorg Chem 48:10913. https://doi.org/10.1021/ic9008976

    Article  CAS  Google Scholar 

  33. Gao D, Xia B, Zhu C, Du Y, Xi P, Xue D, Ding J, Wang J (2018) Activation of the MoSe2 basal plane and Se-edge by B doping for enhanced hydrogen evolution. J Mater Chem A 6:510. https://doi.org/10.1039/C7TA09982G

    Article  CAS  Google Scholar 

  34. Liu H, Long W, Song W, Liu J, Wang F (2017) Tuning the electronic bandgap: an efficient way to improve the electrocatalytic activity of carbon-supported \(\rm Co_{3}O_{4} \) nanocrystals for oxygen reduction reactions. Chem A Eur J 23:2599. https://doi.org/10.1002/chem.201604528

    Article  CAS  Google Scholar 

  35. Feng W, Pang W, Xu Y, Guo A, Gao X, Qiu X, Chen W (2020) Transition metal selenides for electrocatalytic hydrogen evolution reaction. ChemElectroChem 7:31. https://doi.org/10.1002/celc.201901623

    Article  CAS  Google Scholar 

  36. Deng S, Yang F, Zhang Q, Zhong Y, Zeng Y, Lin S, Wang X, Lu X, Wang CZ, Gu L et al (2018) Phase modulation of \((1T--2H)-\rm {MoSe}_{2}/\rm TiC-C \) shell/core arrays via nitrogen doping for highly efficient hydrogen evolution reaction. Adv Mater 30:1802223. https://doi.org/10.1002/adma.201802223

    Article  CAS  Google Scholar 

  37. Grimme S, Antony J, Ehrlich S, Krieg S (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  38. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  39. Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Cryst 41:653. https://doi.org/10.1107/S0021889808012016

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the Council of Scientific and Industrial Research (CSIR) [Sanction No. 01(3086)/21/EMR-II], India for financial support of this work. P.D. thanks the DST-INSPIRE, New Delhi, Govt. of India for the award of INSPIRE fellowship (No. DST/INSPIRE Fellowship/[IF200050]).

Author information

Authors and Affiliations

Authors

Contributions

PD, BB, and BG did the whole work. PD, BB, and PS wrote the main manuscript. PS, PD, and BG analyses the results.

Corresponding author

Correspondence to Pranab Sarkar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is dedicated to Prof. Pratim K. Chattaraj, IIT Kharagpur on the happy occasion of his \(\mathrm {65{th}}\) birth anniversary.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Ball, B., Goswami, B. et al. Designing dithiolene and bis(iminothiolato)-based 1D metal-organic-frameworks for electrocatalytic hydrogen evolution reaction. Theor Chem Acc 142, 41 (2023). https://doi.org/10.1007/s00214-023-02983-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-02983-0

Keywords

Navigation