Skip to main content
Log in

The geometry of calix[3]pyrrole and the formation of the calix[3]pyrrole·F complex in solution

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The accurate determination of the spectral data for strained molecules is challenging, as their geometries in solid state and in solution may differ because the molecules undergo continuous dynamical changes between different conformations. Calix[3]pyrrole, the recently synthesized smallest calixpyrrole, has the Cs point group of symmetry in its crystal structure, despite showing a single chemical shift value for the N–H protons in solution, which suggests that the geometry of calix[3]pyrrole could take a time-averaged, bowl-shaped geometry having a C3v or C3 point group of symmetry in solution. Density functional theory calculations and molecular dynamics simulations showed the most stable geometry of calix[3]pyrrole in the Cs point group of symmetry, and continuous transformation among the equivalent geometries of calix[3]pyrrole. The rapid dynamical change among the conformations of calix[3]pyrrole in the Cs point group of symmetry is the reason behind the observed experimental chemical shift value. The presence of halide (X = F, Cl, Br, I) anions can form stable, bowl-shaped calix[3]pyrrole·X complexes, and the study on calix[3]pyrrole·F showed that three NH···F hydrogen bonds are responsible for their stability. The chemical shift value for the N–H protons in calix[3]pyrrole·F is highly deshielded, as the F anion lowers electron density in the vicinity of these H-atoms. The consideration of dynamics is helpful in understanding the structure of strained molecules and associated spectral data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. d’Ischia M, Napolitano A, Pezzella A (2008) In: Katritzky AR, Ramsden CA, Scriven EFV, Taylor RJK (ed) Comprehensive heterocyclic chemistry III, Elsevier

  2. Baeyer A (1886) Ber Dtsch Chem Ges 19:2184

    Article  Google Scholar 

  3. Gale PA, Sessler JL, Král V, Lynch V (1996) J Am Chem Soc 118:5140–5141

    Article  CAS  Google Scholar 

  4. Kim SK, Sessler JL (2014) Acc Chem Res 47:2525–2536

    Article  CAS  PubMed  Google Scholar 

  5. Turner B, Botoshansky M, Eichen Y (1998) Angew Chem Int Ed 37:2475–2478

    Article  CAS  Google Scholar 

  6. Gale PA, Anzenbacher P, Sessler JL (2001) Coord Chem Rev 222:57–102

    Article  CAS  Google Scholar 

  7. Peng S, He Q, Vargas-Zúñiga GI, Qin L, Hwang I, Kim SK, Heo NJ, Lee C-H, Dutta R, Sessler JL (2020) Chem Soc Rev 49:865–907

    Article  CAS  PubMed  Google Scholar 

  8. Cafeo G, Kohnke FH, Parisi MF, Nascone RP, Torre GLL, Williams DJ (2002) Org Lett 4:2695–2697

    Article  CAS  PubMed  Google Scholar 

  9. Cafeo G, Kohnke FH, Torre GLL, Parisi MF, Nascone RP, White AJP, Williams DJ (2002) Chem Eur J 8:3148–3156

    Article  CAS  PubMed  Google Scholar 

  10. Inaba Y, Nomata Y, Ide Y, Pirillo J, Hijikata Y, Yoneda T, Osuka A, Sessler JL, Inokuma Y (2021) J Am Chem Soc 143:12355–12360

    Article  CAS  PubMed  Google Scholar 

  11. Katritzky AR, Akhmedov NG, Doskocz J, Mohapatra PP, Hall CD, Güven A (2007) Magn Reson Chem 45:532–543

    Article  CAS  PubMed  Google Scholar 

  12. Lash TD, Richter DT, Shiner CM (1999) J Org Chem 64:7973–7982

    Article  CAS  Google Scholar 

  13. Alvi S, Ali R (2021) Org Biomol Chem 19:9732–9745

    Article  CAS  PubMed  Google Scholar 

  14. Zhao Y, Truhlar DG (2008) Theor Chem Account 120:215–241

    Article  CAS  Google Scholar 

  15. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  PubMed  Google Scholar 

  16. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  17. Walker M, Harvey AJA, Sen A, Dessent CEH (2013) J Phys Chem A 117:12590–12600

    Article  CAS  PubMed  Google Scholar 

  18. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  19. Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161–2200

    Article  CAS  PubMed  Google Scholar 

  20. Chipman DM (2002) J Phys Chem A 106:7413–7422

    Article  CAS  Google Scholar 

  21. Chipman DM (2003) J Chem Phys 118:9937–9942

    Article  CAS  Google Scholar 

  22. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094

    Article  CAS  PubMed  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Revision B.01. Gaussian Inc, Wallingford CT

    Google Scholar 

  24. Ditchfield R (1974) Mol Phys 27:789–807

    Article  CAS  Google Scholar 

  25. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  26. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  27. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  28. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  29. Wolinski K, Hilton JF, Pulay P (1990) J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  30. Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) J Chem Phys 104:5497–5509

    Article  CAS  Google Scholar 

  31. Klod S, Kleinpeter E (2001) J Chem Soc Perkin Trans 2:1893–1898

    Google Scholar 

  32. Johnson RE, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen JA, Yang W (2010) J Am Chem Soc 132:6498–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boto AR, Peccati F, Laplaza R, Quan C, Carbone A, Piquemal J-P, Maday Y, Contreras-García J (2020) J Chem Theory Comput 16:4150–4158

    Article  CAS  PubMed  Google Scholar 

  34. Boto AR, Peccati F, Laplaza R, Quan C, Carbone A, Piquemal J-P, Maday Y, Contreras-Garcia J NCIPLOT4: a new step towards a fast quantification of noncovalent interactions, https://github.com/juliacontrerasgarcia/nciplot, Accessed 11 Sept 2022

  35. Bader R (1994) Atoms in molecules: a quantum theory. Oxford University Press, USA

    Google Scholar 

  36. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  37. Su P, Li H (2009) J Chem Phys 131:014102

    Article  PubMed  Google Scholar 

  38. Although it is generally recommended to use adequate quality of basis set to ensure accuracy and discuss quantitatively, we employed Def2-SVP basis set for the LMO-EDA due to insufficient memory size, which would not qualitatively alter the data compared with the data using Def2-TZVP and would not affect the qualitative discussion. For example, the energy difference between the two isomers of calix[3]pyrrole (1 and 2) using M06–2X/Def2-SVP//M06–2X(D3)/Def2-TZVPP level of theory was 14.4 kcal/mol, which was similar to the energy difference of 13.4 kcal/mol using M06–2X(D3)/Def2-TZVPP. In fact, the dependency on basis set is little, which was described in the reference 37

  39. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  40. Zhao L, Hopffgarten Mv, Andrada DM, Frenking G (2018) WIREs Comput Mol Sci 8:e1345

  41. Spoel DVD, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) J Comput Chem 26:1701–1718

    Article  PubMed  Google Scholar 

  42. Hess B, Kutzner C, Spoel DVD, Lindahl E (2008) J Chem Theory Comput 4:435–447

    Article  CAS  PubMed  Google Scholar 

  43. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174

    Article  CAS  PubMed  Google Scholar 

  44. Case DA, Aktulga HM, Belfon K, Ben-Shalom IY, Brozell SR, Cerutti DS, Cheatham TE III, Cisneros GA, Cruzeiro VWD, Darden TA, Duke RE, Giambasu G, Gilson MK, Gohlke H, Goetz AW, Harris R, Izadi S, Izmailov SA, Jin C, Kasavajhala K, Kaymak MC, King E, Kovalenko A, Kurtzman T, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Machado M, Man V, Manathunga M, Merz KM, Miao Y, Mikhailovskii O, Monard G, Nguyen H, O’Hearn KA, Onufriev A, Pan F, Pantano S, Qi R, Rahnamoun A, Roe DR, Roitberg A, Sagui C, Schott-Verdugo S, Shen J, Simmerling CL, Skrynnikov NR, Smith J, Swails J, Walker RC, Wang J, Wei H, Wolf RM, Wu X, Xue Y, York DM, Zhao S, Kollman PA (2021) Amber 2021. University of California, San Francisco

    Google Scholar 

  45. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  46. Bussi G, Donadio D, Parrinello M (2007) J Chem Phys 126:014101

    Article  PubMed  Google Scholar 

  47. Parrinello M, Rahman A (1981) J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  48. Nosé S, Klein ML (1983) Mol Phys 50:1055–1076

    Article  Google Scholar 

  49. Essmann U, Perera L, BerkowitzJ ML (1995) Chem Phys 103:8577

    CAS  Google Scholar 

  50. Caleman C, Maaren PJV, Hong M, Hub JS, Costa LT, Spoel DVD (2012) J Chem Theory Comput 8:61–74

    Article  CAS  PubMed  Google Scholar 

  51. Anderson JE (1965) Q Rev Chem Soc 19:426–439

    Article  CAS  Google Scholar 

  52. Saha R, Kar S, Pan S, Martínez-Guajardo G, Merino G, Chattaraj PK (2017) J Phys Chem A 121:2971–2979

    Article  CAS  PubMed  Google Scholar 

  53. Pan S, Ghara M, Kar S, Zarate X, Merino G, Chattaraj PK (2018) Phys Chem Chem Phys 20:1953–1963

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Specially Promoted Research (No. 18H05209) and Challenging Research (Exploratory) (No. 21K18970) to Y.Hijikata. This work was also supported JSPS Grant-in-Aid for Challenging Research (Exploratory) (No. 20K21214), Scientific Research (B) (No. 22H02058), and JST FOREST Program (No. JPMJFR211H), Research grant by Nagase Science and Technology Foundation of which Y. Inokuma is the principal investigator. Y. Ide is grateful for a Grant-in-Aid for Early-Career Scientists grant (No. 21K14597). The Institute for Chemical Reaction Design and Discovery (ICReDD) was established by the World Premier International Research Initiative (WPI), MEXT, Japan.

Author information

Authors and Affiliations

Authors

Contributions

RS and YH designed the work, planned the methodology, and wrote the manuscript. RS performed on the calculations. All authors discussed and contributed in writing of the manuscript to its final version.

Corresponding authors

Correspondence to Ranajit Saha or Yuh Hijikata.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1003 KB)

Supplementary file2 (MP4 13820 KB)

Supplementary file3 (MP4 16931 KB)

Supplementary file4 (MOV 577 KB)

Supplementary file5 (XYZ 24 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, R., Pirillo, J., Ide, Y. et al. The geometry of calix[3]pyrrole and the formation of the calix[3]pyrrole·F complex in solution. Theor Chem Acc 142, 50 (2023). https://doi.org/10.1007/s00214-023-02982-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-02982-1

Keywords

Navigation