Skip to main content
Log in

(ZnO)42 nanocluster: a novel visibly active magic quantum dot under first principle investigation

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A systematic density functional investigation on the structural, electronic and optical properties of the growth of (ZnO)6 cluster unit in the series of (ZnO)6n for n = 1–9 is reported in this paper. Different electronic properties of (ZnO)6n nanoclusters are analyzed in terms of HOMO–LUMO gap (HLG), ionization potential (IP), electron affinity (EA), chemical hardness (η) and electrophilicity index (ω), which all shows a zigzag behavior as the size of (ZnO)6n clusters increases. The electronic energy gain (ΔE) of the clusters identified an exceptionally stable ‘magic’ nanocluster, viz. (ZnO)42. Frontier orbitals analysis results indicate easy electron transfer in (ZnO)42 nanocluster system. The optical absorption spectra confirm that the magic (ZnO)42 nanocluster is active in the visible range (λ = 406.8 Å) of electromagnetic spectrum. Interestingly, like zigzag electronic properties, similar optical switching toward the growth of (ZnO)6 unit is also observed. The simulation results of electronic properties as well as the infrared spectra of magic (ZnO)42 cluster will open up a vista to the experimentalists for its possible synthesis, which in turn will help in the development of the visibly active magic (ZnO)42 nanocluster with novel applications in the fields of quantum dots or assembled materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jena P, Khanna SN, Rao BK (1999) (1999) Theory of atomic and molecular clusters 27–53. Springer

    Google Scholar 

  2. Kappes MM, Kunz RW, Schumacher E (1982) Production of large sodium clusters (Nax, x < 65) by seeded beam expansions. Chem Phys Lett 91:413–418

    Article  CAS  Google Scholar 

  3. Ekardt W (1984) Dynamical polarizability of small metal particles - self-consistent spherical jellium background model. Phys Rev Lett 52:1925–1928

    Article  CAS  Google Scholar 

  4. Bergeron DE, Castleman AW, Morisato T, Khanna SN (2004) Formation of Al13I: evidence for the superhalogen character of Al13. Science 304:84–87

    Article  CAS  PubMed  Google Scholar 

  5. Knight WD et al (1984) Electronic shell structure and abundances of sodium clusters. Phys Rev Lett 52:2141–2143

    Article  CAS  Google Scholar 

  6. Roy DR, Singh PK (2013) Magic stability of Ga4Mg3 cluster in GaxMg3 (x=1-6) series: a density functional study. Chem Phys 411:6–10

    Article  CAS  Google Scholar 

  7. Khatua S, Roy DR, Chattaraj PK, Bhattacharjee M (2007) Synthesis and structure of 1D Na6 cluster chain with unusual short na-na distance: organic like aromaticity in inorganic metal cluster. Chem. Commun. 135–137

  8. Kappes MM, Radi P, Schar M, Schumacher E (1985) Probes for electronic and geometrical shell structure effects in alkali-metal clusters. Photoionization measurements on KxLi, KxMg and KxZn (x<25). Chem Phys Lett 119:11–16

    Article  CAS  Google Scholar 

  9. Khatua S, Roy DR, Bultinck P, Bhattacharjee M, Chattaraj PK (2008) Aromaticity in cyclic alkali clusters. Phys Chem Chem Phys 10:2461–2474

    Article  CAS  PubMed  Google Scholar 

  10. Roy DR, Shah EV, Mondal Roy S (2018) Optical activity of co-poprhyrin in the light of IR and raman spectroscopy: a critical DFT investigation. Spectroch. Acta A 190:121–128

    Article  CAS  Google Scholar 

  11. Watanabe HI, Inoshita T (1986) Superatom: a novel concept in materials science. Optoelectron Dev 1:33–39

    CAS  Google Scholar 

  12. Tung NT, Janssens E, Lievens P (2014) Dopant dependent stability of Co n TM+ (TM = Ti, V, Cr, and Mn) clusters. Appl Phys B 114(4):497–502

    Article  CAS  Google Scholar 

  13. Asaduzzaman AM, Blackman JA (2010) Magnetism in binary and encapsulated Co-Mn clusters. Phys Rev B 82:134417

    Article  Google Scholar 

  14. Honkala K (2014) Tailoring oxide properties: an impact on adsorption characteristics of molecules and metals. Surf Sci Rep 69(4):366

    Article  CAS  Google Scholar 

  15. Henrich VE, Cox PA (1996) The Surface Science of Metal Oxides, vol 1. Cambridge University Press, Cambridge, UK

    Google Scholar 

  16. Danish MSS, Bhattacharya A, Stepanova D, Mikhaylov A, Grilli ML, Khosravy M, Senjyu T (2020) A systematic review of metal oxide applications for energy and environmental sustainability. Metals 10:2075–4701

    Article  Google Scholar 

  17. Biswas S, Sharma P, Awasthi V, Sengar BS, Das AK, Mukherjee S (2016) Photosensitive ZnO-graphene quantum dot hybrid nanocomposite for optoelectronic applications. ChemistrySelect 1:1503–1509

    Article  Google Scholar 

  18. Mohiuddin M, Kumar B, Haque H (2017) Biopolymer composites in photovoltaics and photodetectors. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan J-J, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 459–486

    Chapter  Google Scholar 

  19. Tiginyanu IM, Lupan O, Ursaki VV, Chow L, Enachi M (2011) Nanostructures of Metal Oxides. In: Bhattacharya P, Fornari R, Kamimura H (eds) Comprehensive semiconductor science and Technology. Elsevier, pp 396–479

    Chapter  Google Scholar 

  20. Stehr JE, Chen WM, Reddy NK, Tu CW, Buyanova IA (2015) Efficient nitrogen incorporation in ZnO nanowires. Sci Rep 5:13406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Soci C, Zhang A, Xiang B, Dayeh SA, Aplin DPR, Park J, Bao XY, Lo YH, Wang D (2007) ZnO nanowire UV photodetectors with high internal gain. Nano Lett 7:1003–1009

    Article  CAS  PubMed  Google Scholar 

  22. Rackauskas S, Barbero N, Barolo C, Viscardi G (2017) ZnO nanowires for dye sensitized solar cells. In nanowires-new insights. IntechOpen. https://doi.org/10.5772/67616

    Article  Google Scholar 

  23. Znajdek K, Sibi’nski M, Lisik Z, Apostoluk A, Zhu Y, Masenelli B, Sedzicki P (2017) Zinc oxide nanoparticles for improvement of thin film photovoltaic structures’ efficiency through down shifting conversion. Opto-Electron. Rev. 25:99–102

    Article  Google Scholar 

  24. Zhang XM, Lu MY, Zhang Y, Chen LJ, Wang ZL (2009) Fabrication of a high- brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv Mater 21:2767–2770

    Article  CAS  Google Scholar 

  25. Zhang Y, Nayak TR, Hong H, Cai W (2013) Biomedical applications of Zinc oxide nanomaterials. Curr Mol Med 13:1633–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jena P, Sun O (2020) Super atomic clusters: design rules and potential for building blocks of materials. Chem Rev 120:9021–9163

    Google Scholar 

  27. Li H, Li L, Pedersen A, Gao Y, Khetrapal N, Jónsson J, Zeng XC (2015) Magic- number gold nanoclusters with diameters from 1 to 3.5 nm: relative stability and catalytic activity for CO oxidation. Nano Lett. 15:682–688

    Article  PubMed  Google Scholar 

  28. McKee ML, Samokhvalov A (2017) Density functional study of neutral and charged silver clusters Agn with n=2–22 evolution of properties and structure. J. Phys Chem A 121:5018–5028

    Article  CAS  PubMed  Google Scholar 

  29. Kukreja LM, Rohlfing A, Misra P, Hillenkamp F, Dreisewerd K (2004) Cluster formation in UV laser ablation plumes of ZnSe and ZnO studied by time-of-flight mass spectrometry. Appl Phys A 78:641–644

    Article  CAS  Google Scholar 

  30. Dmytruk A, Dmitruk I, Blonskyy I, Belosludov R, Kawazoe Y, Kasuya A (2009) ZnO clusters: laser ablation production and time-of-flight mass spectroscopic study. Microelectron J 40:218–220

    Article  CAS  Google Scholar 

  31. Chen M, Straatsma TP, Fang Z, Dixon DA (2016) Structural and electronic property study of (ZnO)n, n ≤ 168: transition from zinc oxide molecular clusters to ultrasmall nanoparticles. J Phys Chem C 120:20400–20418

    Article  CAS  Google Scholar 

  32. Gaikwad PV, Pujari PK, Chakroborty S, Kshirsagar A (2017) Cluster assembly route to a novel octagonal two-dimensional ZnO monolayer. J Phys Cond Matter 29:335501

    Article  Google Scholar 

  33. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:B864–B871

    Article  Google Scholar 

  34. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140:A1133–A1138

    Article  Google Scholar 

  35. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  36. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  37. Dunning Jr TH, Hay PJ (1976) in ‘Modern Theoretical Chemistry’, H.F. Schaefer III (Ed.), Vol. 3, Plenum, New York

  38. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  39. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations - potentials for the transition-metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  40. Frisch MJ et al (2009) Gaussian 09, Revision E.01. Gaussian Inc., Wallingford CT

    Google Scholar 

  41. Roy DR. Chattaraj PK (2021)‘Conceptual DFT and aromaticity' in aromaticity (1st Ed.), Israel Fernández (Ed.), Elsevier: MA.

  42. Pearson RG (1973) Hard and soft acids and bases. Dowden, Hutchinson and Ross, Stroutsberg, PA

    Google Scholar 

  43. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  44. Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  45. Chattaraj PK, Roy DR (2007) Update 1 of: electrophilicity index. Chem. Rev. 107:PR46–PR74

    Article  CAS  Google Scholar 

  46. Chattaraj PK, Sarkar U, Roy DR, Elango M, Parthasarathi R, Subramanian V (2006) Is electrophilicity a kinetic or A thermodynamic concept? Ind J Chem A 45A:1099–1112

    CAS  Google Scholar 

  47. Marques MAL, Gross EKU (2004) Time-dependent density functional theory. Ann Rev Phys Chem 55:427–455

    Article  CAS  Google Scholar 

  48. Casida ME, Huix-Rotllant M (2012) Progress in time-dependent density-functional theory. Annu Rev Phys Chem 63:287–323

    Article  CAS  PubMed  Google Scholar 

  49. Fogarasi G, Pulay P (1985) In Vibrational Spectra and Structure. Durig JR (Ed.), Elsevier: New York, Vol 13.

  50. Califano S (1976) Vibrational states. Wiley, New York

    Google Scholar 

  51. Swinehart DF (1962) The beer-lambert law. J Chem Educ 39:333

    Article  CAS  Google Scholar 

  52. Swinehart, D.F. Analytical chemistry: an introduction (Saunders Golden Sunburst Series) Skoog. In: D.A., West, D.M. & Holler, F.J. (Ed) (1999).

  53. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. I J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DRR is thankful to the SERB, New Delhi, Govt. of India for financial support (Grant Nos. EMR/2016/005830 and CRG/2020/002634). SMR is thankful to the SERB, New Delhi, Govt. of India for financial support (Grant No. TAR/2021/000150).

Author information

Authors and Affiliations

Authors

Contributions

BRM contributed to investigation, results, and writing—original draft. EVS contributed to investigation, results, and writing—original draft. SMR contributed to conceptualization, supervision, results analysis, writing—review and editing. DRR contributed to conceptualization, supervision, results analysis, writingβ—review and editing, resources.

Corresponding authors

Correspondence to Sutapa Mondal Roy or Debesh R. Roy.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors dedicate this work to Professor Pratim Kumar Chattaraj on his 65th birth anniversary.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 399 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, B.R., Shah, E.V., Mondal Roy, S. et al. (ZnO)42 nanocluster: a novel visibly active magic quantum dot under first principle investigation. Theor Chem Acc 142, 19 (2023). https://doi.org/10.1007/s00214-023-02958-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-02958-1

Keywords

Navigation