Skip to main content
Log in

A quantum-classical correspondence in the dynamics around higher order saddle points: a Bohmian perspective

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The quantum-classical correspondence in a model four-well potential, exhibiting both first- and second-order saddle points, is analyzed based on Bohm-inspired quantum trajectories whereas the corresponding classical dynamics have been analyzed based on Hamilton’s Equations of Motion. The results indicate that there exists some qualitative correspondence between quantum and classical phase-space dynamics in the intermediate energy regimes. However, at both low and very high energy regimes, the quantum trajectories explore classically forbidden regions in the phase-space. The quantum trajectories attain more ergodic properties than their classical counterparts, particularly at the initial stages of the dynamics, as evidenced by their concerned Lyapunov exponents as well as concerned power spectra of the trajectories. Possible implications of the present simulation study in the context of a model isomerization reaction are also discussed. In the quantum domain, the mechanism for the model isomerization reaction (considered herein) could at best be described as a mixture of concerted and sequential mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Eyring H (1935) J Chem Phys 3:107–115

    Article  CAS  Google Scholar 

  2. Truhlar DG, Hase WL, Hynes JT (1983) J Phys Chem 87:2664–2682

    Article  CAS  Google Scholar 

  3. Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem 100:12771–12800

    Article  CAS  Google Scholar 

  4. Bear T, Hase WL (1996) Unimolecular reaction dynamics – theory and experiments. Oxford University Press, New York

    Book  Google Scholar 

  5. Wigner EP (1938) Trans Faraday Soc 34:29–41

    Article  CAS  Google Scholar 

  6. Keck J C (1967) In: Prigogine I (ed) Advances in chemical physics. Wiley, New Jersey

  7. Pechukas P (1981) Ann Rev Phys Chem 32:159–177

    Article  CAS  Google Scholar 

  8. Pemerantz AE, Camden JP, Chiou AS, Ausfelder F, Chawla N, Hase WL, Zare RN (2005) J Am Chem Soc 127:16368–16369

    Article  Google Scholar 

  9. Lo´pez JG, Vayner G, Lourderaj U, Addepalli SV, Kato S, deJong WA, Windus TL, Hase WL (2007) J Am Chem Soc 129:9976–9985

    Article  PubMed  Google Scholar 

  10. Martínez-Núñez E (2015) Phys Chem Chem Phys 17:14912–14921

    Article  PubMed  Google Scholar 

  11. Maeda S, Ohno K, Morokuma K (2013) Phys Chem Chem Phys 15:3683–3701

    Article  CAS  PubMed  Google Scholar 

  12. Ess DH (2021) Acc Chem Res 54:4410–4422

    Article  CAS  PubMed  Google Scholar 

  13. Tantillo DJ (2021) Adv Phys Org Chem 55:1–16

    CAS  Google Scholar 

  14. Chakraborty D, Hase WL (2022). J Phys Org Chem. https://doi.org/10.1002/poc.4339

    Article  Google Scholar 

  15. Debarre D, Lefebvre M, Pealat M, Taran JPE, Bamford DJ, Moore CB (1985) J Chem Phys 83:4476–4487

    Article  CAS  Google Scholar 

  16. Butenho TJ, Carleton KL, Moore CB (1990) J Chem Phys 92:377–393

    Article  Google Scholar 

  17. Townsend D, Lahankar SA, Lee SK, Hambreau CSD, Suits AG, Zhang X, Rheinecker J, Harding LB, Bowman JM (2004) Science 306:1158–1161

    Article  CAS  PubMed  Google Scholar 

  18. Suits AG (2008) Acc Chem Res 41:873–881

    Article  CAS  PubMed  Google Scholar 

  19. Ezra GS, Wiggins S (2009) J Phys A 42:205101

    Article  Google Scholar 

  20. Haller G, Palacian J, Yanguas P, Uzer T, Jaffé C (2010) Commun Nonlinear Sci Numer Simul 15:48–59

    Article  Google Scholar 

  21. Haller G, Uzer T, Palacian J, Yanguas P, Jaffé C (2011) Nonlinearity 24:527

    Article  Google Scholar 

  22. Lourderaj U, Hase WL (2009) J Phys Chem A 113:2236–2253

    Article  CAS  PubMed  Google Scholar 

  23. Chakraborty D, Lischka H, Hase WL (2020) J Phys Chem A 124:8907–8917

    Article  CAS  PubMed  Google Scholar 

  24. Bunker DL, Hase WL (1973) J Chem Phys 59:4621–4632

    Article  CAS  Google Scholar 

  25. Marcus RA, Hase WL, Swamy KN (1984) J Phys Chem 88:6717–6720

    Article  CAS  Google Scholar 

  26. Murrell JN, Laidler KJ (1968) Trans Faraday Soc 64:371–377

    Article  CAS  Google Scholar 

  27. Minyaev RM, Lepin EA (1997) Russ J Phys Chem 71:1449

    CAS  Google Scholar 

  28. Fau S, Frenking G (1995) Theochem J Mol Struct 338:117–130

    Article  CAS  Google Scholar 

  29. Heidrich D, Quapp W (1986) Theor Chim Acta 70:89–98

    Article  CAS  Google Scholar 

  30. Collins P, Ezra GS, Wiggins S (2011) J Chem Phys 134:244105

    Article  PubMed  Google Scholar 

  31. Bohm D (1952) Phys Rev 85:166–179

    Article  CAS  Google Scholar 

  32. Bohm D (1952) Phys Rev 85:180–193

    Article  CAS  Google Scholar 

  33. Holland PR (1993) The quantum theory of motion. Cambridge University Press, Cambridge

    Book  Google Scholar 

  34. Wyatt RE (2005) Quantum dynamics with trajectories: introduction to quantum hydrodynamics. Springer, New York

    Google Scholar 

  35. Chattaraj PK (ed) (2010) Quantum trajectories. Taylor & Francis, CRC Press, Florida

    Google Scholar 

  36. Lopreore CL, Wyatt RE (1999) Phys Rev Lett 82:5190–5193

    Article  CAS  Google Scholar 

  37. Konkel S, Makowski AJ (1998) Phys Lett A 238:95–100

    Article  CAS  Google Scholar 

  38. Sengupta S, Chattaraj PK (1996) Phys Lett A 215:119–127

    Article  CAS  Google Scholar 

  39. Schwengelbeck U, Faisal FHM (1995) Phys Lett A 199:281–286

    Article  CAS  Google Scholar 

  40. Faisal FHM, Schwengelbeck U (1995) Phys Lett A 207:31–36

    Article  CAS  Google Scholar 

  41. Chattaraj PK, Sengupta S, Maity B (2004) Int J Quantum Chem 100:254–276

    Article  CAS  Google Scholar 

  42. Chakraborty D, Chattaraj PK (2014) Chem Phys 438:7–15

    Article  CAS  Google Scholar 

  43. Sengupta S, Khatua M, Chattaraj PK (2014) Chaos 24:043123

    Article  PubMed  Google Scholar 

  44. Parmenter RH, Valentine RW (1995) Phys Lett A 201:1–8

    Article  CAS  Google Scholar 

  45. de Polavieja GG (1996) Phys Rev A 53:2059–2061

    Article  Google Scholar 

  46. de Alcantara Bonfim OF, Florencio J, Barreto Sa FC (1998) Phys Rev E 58:6851–6854

    Article  Google Scholar 

  47. Chakraborty D, Kar S, Chattaraj PK (2015) Phys Chem Chem Phys 17:31516–31529

    Article  CAS  PubMed  Google Scholar 

  48. Chakraborty B, Jha R, Kar S, Chattaraj PK (2022) J Phys Chem A 126:4834–4847

    Article  CAS  PubMed  Google Scholar 

  49. Khatua M, Chakraborty D, Chattaraj PK (2013) Int J Quantum Chem 113:1747–1771

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DC thanks SERB, New Delhi (File No. SRG/2022/001280) for the financial assistance. He also thanks the HPC facility of BIT, Mesra, for providing the computational facility. PKC thanks DST, New Delhi, for the J. C. Bose fellowship.

Author information

Authors and Affiliations

Authors

Contributions

PKC and DC contributed to the conceptualization of the problem. DC Performed the calculations reported herein. DC wrote the original draft and PKC reviewed/edited it.

Corresponding authors

Correspondence to Debdutta Chakraborty or Pratim Kumar Chattaraj.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, D., Chattaraj, P.K. A quantum-classical correspondence in the dynamics around higher order saddle points: a Bohmian perspective. Theor Chem Acc 142, 18 (2023). https://doi.org/10.1007/s00214-023-02957-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-02957-2

Keywords

Navigation