Skip to main content
Log in

BO2 substituted novel alkyl biphenyl liquid crystalline series: dependence of geometrical and electronic properties on the alkyl chain length

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

4-n-alkyl-4´-cynobiphenyl (nCB) is one of the most popular liquid crystalline (LC) series having alkyl chain and CN terminals. Herein, we study a novel 4-n-alkyl-4´-metaboranobiphenyl (nBB) series by substituting BO2 in the place of CN using the B3LYP/6–311++G(d,p) level. BO2 is a superhalogen, which possesses higher electron affinity than halogen, just as CN. We have analyzed the dependence of various geometrical and electronic properties of nBB series on n for n = 1 to 15. The length/breadth ratio, ovality and anisotropy of this series show the similar variation as those of typical LC series. Further, the variation in dipole moment and HOMO–LUMO gap is quite similar to the odd–even effect observed in typical LC compounds. We also consider some parameters of nBB and nCB series to perform a comparative study. Our results strongly suggest nBB as potential candidates for novel liquid crystalline series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sudhakar S, Narasimhaswamy T, Srinivasan K (2000) Liq Cryst 27:1525–1532

    Article  CAS  Google Scholar 

  2. Saha SK, Deb J, Sarkar U, Paul MK (2017) Liq Cryst 44:2203–2221

    Article  CAS  Google Scholar 

  3. Saha SK, Paul MK (2019) Liq Cryst 46:386–396

    Article  CAS  Google Scholar 

  4. Ong LK, Ha ST, Yeap GY, Lin HC (2018) Liq Cryst 45:1574–1584

    Article  CAS  Google Scholar 

  5. Quan YY, Wang D, He QQ, Hu JW, Tian M, Wang XJ, Jia YG, Yao DS (2020) Liq Cryst 47:737–749

    Article  CAS  Google Scholar 

  6. Gray GW (1962) Molecular structure and properties of liquid crystals. Academic Press, New York

    Google Scholar 

  7. Gray GW, Harrison KJ, Nash JA, Constant J, Hulme DS, Kirton J, Raynes EP (1974) Liq Cryst & Ordered Fluids 2:617–643

    Article  Google Scholar 

  8. Gray GW, Harrison KJ, Nash JA (1975) Pramana 1:381

    Google Scholar 

  9. Saeva FD (1979) Liquid crstals: the fourth state of matter. Marcel Dekker, New York

    Google Scholar 

  10. Mitra S, Shastry VSS, Venu K, Mukhopadhyay R (2005) Chem Phys Lett 406:263–267

    Article  CAS  Google Scholar 

  11. Chan L, Gray G, Lacey D (1995) Mol Cryst Liq Cryst 123:185–204

    Article  Google Scholar 

  12. Cacelli I, De Gaetani L, Prampolini G, Tani A (2007) J Phys Chem B 111:2130–2137

    Article  CAS  PubMed  Google Scholar 

  13. Srivastava AK (2021) J Mol Liquids 344:117968

    Article  CAS  Google Scholar 

  14. Kumar A, Srivastava AK, Sharma D, Tiwari SN, Misra N (2019) Mol Cryst Liq Crystal 681:23–31

    Article  CAS  Google Scholar 

  15. McDonnell DG, Raynes EP, Smith RA (1989) Liq Cryst 6:515

    Article  CAS  Google Scholar 

  16. Constant J, Raynes EP (1980) Mol Cryst Liq Cryst 62:115

    Article  CAS  Google Scholar 

  17. Dwivedi MK, Tiwari SN (2011) J Mol Liq 158:208–211

    Article  CAS  Google Scholar 

  18. Jakli A (2022) Liq Cryst 49:1010–1019

    Article  CAS  Google Scholar 

  19. Schaake RCF, Miltenburg JCV, De Kruif CD (1982) J Chem Thermodyn 14:763–769

    Article  CAS  Google Scholar 

  20. Burrows HD (1992) J Chem Educ 69:69–73

    Article  CAS  Google Scholar 

  21. Capar MI, Cebe E (2007) J Comput Chem 28:2140–2146

    Article  CAS  PubMed  Google Scholar 

  22. Saha R, Babakhanova G, Parsouzi Z, Rajabi M, Gyawali P, Welch C, Jákli A (2019) Mater Horiz 6:1905–1912

    Article  CAS  Google Scholar 

  23. Alamro FS, Tolan DA, El-Nahas AM, Ahmed HA, El-Atawy MA, Al-Kadhi NS, Shibl MF (2022) Molecules 27:4150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Imrie CT, Henderson PA (2007) Chem Soc Rev 36:2096–2124

    Article  CAS  PubMed  Google Scholar 

  25. Soutzidou M, Glezakou VA, Viras K, Helliwell M, Masters AJ, Vincent MA (2002) J Phys Chem B 106:4405–4411

    Article  CAS  Google Scholar 

  26. Barnes PJ, Douglass AG, Heeks SK, Luckhurst GR (1993) Liq Cryst 13:603–613

    Article  CAS  Google Scholar 

  27. Świergiel J, Grembowski J, Jadżyn J (2017) J Mol Liq 229:472–476

    Article  Google Scholar 

  28. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  29. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2009) Gaussian 09, revision C02. Gaussian Inc, Wallingford, CT

    Google Scholar 

  31. Chandrasekhar S (1992) Liq Cryst. Cambridge University Press, Cambridge

    Book  Google Scholar 

  32. Lalanne JR, Rayez JC, Duguay B, Proutiere A, Viani R (1984) J Chem Phy 81:344

    Article  CAS  Google Scholar 

  33. Paterson DA, Abberley JP, Harrison WT, Storey JM, Imrie CT (2017) Liq Cryst 44:127–146

    CAS  Google Scholar 

  34. Yeap GY, Lee HC, Mahmood WAK, Imrie CT, Takeuchi D, Osakada K (2011) Phase Transit 84:29–37

    Article  CAS  Google Scholar 

  35. Henderson PA, Seddon JM, Imrie CT (2005) Liq Cryst 32:1499–1513

    Article  CAS  Google Scholar 

  36. Attard GS, Date RW, Imrie CT, Luckhurst GR, Roskilly SJ, Seddon JM, Taylor L (1994) Liq Cryst 16:529–581

    Article  CAS  Google Scholar 

  37. Hickey AL, Rowley CN (2014) J Phys Chem A 118:3678–3687

    Article  CAS  PubMed  Google Scholar 

  38. Emam SM, Tolan DA, El-Nahas AM (2020) Appl Organomet Chem 34:e5591

    Article  CAS  Google Scholar 

  39. Tolan DA, Kashar TI, Yoshizawa K, El-Nahas AM (2021) Appl Organomet Chem 35:e6205

    Article  CAS  Google Scholar 

  40. Pegu D, Deb J, Van Alsenoy C, Sarkar U (2017) Spectrosc Lett 50:232–243

    Article  CAS  Google Scholar 

  41. Parlak C, Alver Ö, Naphtaly C, Ouma M, Rhyman L, Ramasami P (2022) Chem Papers 76:1471–1478

    Article  CAS  Google Scholar 

  42. Sanderson RT (1983) Polar Covalence. Academic Press, New York

    Google Scholar 

  43. Pearson RG (1973) Hard and Soft Acids and Bases, Dowen, Hutchinson and Ross, Stroudsberg

  44. Parr RG, Szentpaly LV, Liu S (1999) J Am Chem Soc 121:1922

    Article  CAS  Google Scholar 

  45. Fleming I (1976) Frontier orbitals and organic chemical reactions. John Wiley and Sons, New York

    Google Scholar 

  46. Belletete M, Morin JF, Leclere M, Durocher G (2005) J Phys Chem 109:6953

    Article  CAS  Google Scholar 

  47. Koopmans TA (1993) Physica 91:104–113

    Google Scholar 

Download references

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

AKS conceptualized the work and AK performed the calculations. Both AK and AKS wrote the main manuscript. DS, SNT and NM provided their feedbacks and edited the draft. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ambrish Kumar Srivastava.

Ethics declarations

Competing interests

The authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Srivastava, A.K., Sharma, D. et al. BO2 substituted novel alkyl biphenyl liquid crystalline series: dependence of geometrical and electronic properties on the alkyl chain length. Theor Chem Acc 142, 17 (2023). https://doi.org/10.1007/s00214-023-02956-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-02956-3

Keywords

Navigation