Skip to main content
Log in

Origin invariant molecular orbital decomposition of optical rotation

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Optical rotation (OR) is a sensitive electronic property for which there are no clear structure-property relations. We proposed an approach to decompose the OR tensor in terms of one-electron transitions between occupied-virtual molecular orbital pairs, called the \(\tilde{S}_{ia}\) method. This method allows to select the transitions with the largest magnitude that determine the overall value of the OR for a specific molecule, thus providing useful insights for characterization. However, the individual \(\tilde{S}_{ia}\) values are origin-dependent even if the total OR is origin invariant. In this work, we explicitly identify the reason for the origin dependence of the \(\tilde{S}_{ia}\) original formulations and we propose two ways to eliminate this spurious effect and define an origin invariant \(\tilde{S}_{ia}\) within the modified velocity gauge formalism. One approach is based on averaging the electric and magnetic-perturbed density \(\tilde{S}_{ia}\) definitions (which have equal and opposite origin dependence that cancels out in the average), while the second approach is based on the equal distribution of the electronic response to an external field via Cholesky decomposition of the response matrix. Numerical results prove that the new \(\tilde{S}_{ia}\) definitions are indeed origin invariant and they provide the same physical picture for the OR tensor decomposition. At the same time, we show that setting the origin of the coordinate system at the center of mass of the molecule also provides the same physical picture when using the original \(\tilde{S}_{ia}\) formulation, which confirms that this is a robust approach for investigating structure-property relations in chiral molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Caricato M (2015) Orbital analysis of molecular optical activity based on configuration rotatory strength. J Chem Theory Comput 11(4):1349–1353. https://doi.org/10.1021/acs.jctc.5b00051

    Article  CAS  Google Scholar 

  2. Kirkwood JG (1937) On the theory of optical rotatory power. J Chem Phys 5(6):479. https://doi.org/10.1063/1.1750060

    Article  CAS  Google Scholar 

  3. Kondru RK, Wipf P, Beratan DN (1998) Atomic contributions to the optical rotation angle as a quantitative probe of molecular chirality. Science 282(5397):2247–2250. https://doi.org/10.1126/science.282.5397.2247

    Article  CAS  Google Scholar 

  4. Moore B, Srebro M, Autschbach J (2012) Analysis of optical activity in terms of bonds and lone-pairs: the exceptionally large optical rotation of norbornenone. J Chem Theory Comput 8(11):4336–4346. https://doi.org/10.1021/ct300839y

    Article  CAS  Google Scholar 

  5. Polavarapu PL, Chakraborty DK, Ruud K (2000) Molecular optical rotation: an evaluation of semiempirical models. Chem Phys Lett 319(5):595–600. https://doi.org/10.1016/S0009-2614(00)00157-3

    Article  CAS  Google Scholar 

  6. Wiberg KB, Caricato M, Wang YG et al (2013) Towards the accurate and efficient calculation of optical rotatory dispersion using augmented minimal basis sets. Chirality 25(10):606–616. https://doi.org/10.1002/chir.22184

    Article  CAS  Google Scholar 

  7. Caricato M (2015) Conformational effects on specific rotation: a theoretical study based on the \(\tilde{S}_{k}\) method. J Phys Chem A 119(30):8303–8310. https://doi.org/10.1021/acs.jpca.5b05103

    Article  CAS  Google Scholar 

  8. Aharon T, Caricato M (2019) Configuration space analysis of the specific rotation of helicenes. J Phys Chem A 123(20):4406–4418. https://doi.org/10.1021/acs.jpca.9b01823

    Article  CAS  Google Scholar 

  9. Balduf T, Caricato M (2021) Gauge dependence of the \(\tilde{S}\) molecular orbital space decomposition of optical rotation. J Phys Chem A 125(23):4976–4985. https://doi.org/10.1021/acs.jpca.1c01653

    Article  CAS  Google Scholar 

  10. Pedersen TB, Koch H, Boman L et al (2004) Origin invariant calculation of optical rotation without recourse to London orbitals. Chem Phys Lett 393(4–6):319–326. https://doi.org/10.1016/j.cplett.2004.06.065

    Article  CAS  Google Scholar 

  11. Caricato M (2020) Origin invariant optical rotation in the length dipole gauge without London atomic orbitals. J Chem Phys 153(15):151101. https://doi.org/10.1063/5.0028849

    Article  Google Scholar 

  12. Crawford TD, Stephens PJ (2008) Comparison of time-dependent density-functional theory and coupled cluster theory for the calculation of the optical rotations of Chiral molecules. J Phys Chem A 112(6):1339–1345. https://doi.org/10.1021/jp0774488

    Article  CAS  Google Scholar 

  13. Barron LD (2004) Molecular light scattering and optical activity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  14. Buckingham AD, Dunn MB (1971) Optical activity of oriented molecules. J Chem Soc A Inorgnic Phys Theor 1971:1988–1991. https://doi.org/10.1039/J19710001988

    Article  Google Scholar 

  15. Krykunov M, Autschbach J (2006) Calculation of origin-independent optical rotation tensor components in approximate time-dependent density functional theory. J Chem Phys 125(034):102. https://doi.org/10.1063/1.2210474

    Article  CAS  Google Scholar 

  16. Norman P, Ruud K, Helgaker T (2004) Density-functional theory calculations of optical rotatory dispersion in the nonresonant and resonant frequency regions. J Chem Phys 120(11):5027–5035. https://doi.org/10.1063/1.1647515

    Article  CAS  Google Scholar 

  17. Wiberg KB, Wang YG, Wilson SM et al (2006) Sum-over-states calculation of the specific rotations of some substituted oxiranes, chloropropionitrile, ethane, and norbornenone. J Phys Chem A 110(51):13995–14002. https://doi.org/10.1021/jp0655221

    Article  CAS  Google Scholar 

  18. Caricato M, Vaccaro PH, Crawford TD et al (2014) Insights on the origin of the unusually large specific rotation of (1S,4S)-Norbornenone. J Phys Chem A 118(26):4863–4871. https://doi.org/10.1021/jp504345g

    Article  CAS  Google Scholar 

  19. Autschbach J, Nitsch-Velasquez L, Rudolph M (2011) Time-dependent density functional response theory for electronic chiroptical properties of chiral molecules. Top Curr Chem 298:1–98. https://doi.org/10.1007/128_2010_72

    Article  CAS  Google Scholar 

  20. Crawford TD, Tam MC, Abrams ML (2007) The current state of ab initio calculations of optical rotation and electronic circular dichroism spectra. J Phys Chem A 111(48):12057–12068. https://doi.org/10.1021/jp075046u

    Article  CAS  Google Scholar 

  21. McWeeny R (1978) Methods of molecular quantum mechanics, 2nd edn. Academic Press, San Diego

    Google Scholar 

  22. Frisch M, Head-Gordon M, Pople J (1990) Direct analytic SCF second derivatives and electric field properties. Chem Phys 141(2–3):189–196. https://doi.org/10.1016/0301-0104(90)87055-G

    Article  Google Scholar 

  23. Izmaylov AF, Brothers EN, Scuseria GE (2006) Linear-scaling calculation of static and dynamic polarizabilities in Hartree-Fock and density functional theory for periodic systems. J Chem Phys 125(22):224105. https://doi.org/10.1063/1.2404667

    Article  CAS  Google Scholar 

  24. Pople JA, Krishnan R, Schlegel HB et al (1979) Derivative studies in Hartree-Fock and Moller-Plesset theories. Int J Quantum Chem 13:225–241

    CAS  Google Scholar 

  25. Lazzeretti P (2014) Invariance of molecular response properties under a coordinate translation. Int J Quantum Chem 114:1364–1392

    Article  CAS  Google Scholar 

  26. Caricato M, Balduf T (2021) Origin invariant full optical rotation tensor in the length dipole gauge without London atomic orbitals. J Chem Phys 155(2):024118. https://doi.org/10.1063/5.0053450

    Article  CAS  Google Scholar 

  27. Aquilante F, Boman L, Boström J et al (2011) Cholesky decomposition techniques in electronic structure theory. In: Zalesny R, Papadopoulos MG, Mezey PG et al (eds) Linear-scaling techniques in computational chemistry and physics. Springer, Dordrecht, pp 301–343

    Chapter  Google Scholar 

  28. Čížek J, Paldus J (1967) Stability conditions for the solutions of the Hartree-Fock equations for atomic and molecular systems. Application to the Pi-electron model of cyclic polyenes. J Chem Phys 47(10):3976–3985. https://doi.org/10.1063/1.1701562

    Article  Google Scholar 

  29. Ditchfield R (1974) Self-consistent perturbation theory of diamagnetism I. A gauge-invariant LCAO method for N.M.R. chemical shifts. Mol Phys 27(4):789–807. https://doi.org/10.1080/00268977400100711

    Article  CAS  Google Scholar 

  30. London F (1937) Théorie quantique des courants interatomiques dans les combinaisons aromatiques. J Phys Radium 8(10):397–409. https://doi.org/10.1051/jphysrad:01937008010039700

    Article  CAS  Google Scholar 

  31. Niemeyer N, Caricato M, Neugebauer J (2022) Origin invariant electronic circular dichroism in the length dipole gauge without London atomic orbitals. J Chem Phys 156(15):154114

    Article  CAS  Google Scholar 

  32. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007. https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, et al (2020) Gaussian development version revision J.13

Download references

Acknowledgements

The authors gratefully acknowledge support from the National Science Foundation through Grant No. CHE-1650942.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by TB. The first draft of the manuscript was written by TB, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ty Balduf or Marco Caricato.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 84 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balduf, T., Caricato, M. Origin invariant molecular orbital decomposition of optical rotation. Theor Chem Acc 142, 11 (2023). https://doi.org/10.1007/s00214-022-02944-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02944-z

Keywords

Navigation