Skip to main content
Log in

Quest of new molecular frameworks for photoinduced carbon monoxide-releasing molecules: a computational prospective

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Manganese tricarbonyl complexes are considered as promising compounds as they release carbon monoxide (CO) upon irradiation of light. Carbon monoxide-releasing molecules may supply a controlled amount of CO to the biological systems. Therefore, this research area is a hot topic in medicine, especially cancer treatment. The designing and analysis of carbon monoxide-releasing compounds can be done using various experimental and theoretical methods. We have performed density functional theory (DFT) calculations to identify and scrutinize such molecules to investigate the ability to release CO. In this report, we have taken Mn(I) tricarbonyl complexes that bear di(2-picolyl)amine unit with different kinds of electron-withdrawing nature ligands. We have used density functional theory (DFT) to optimize different complexes with the B3LYP/LANL2DZ basis set. DFT and time-dependent density functional theory (TD-DFT) calculations infer that the designed carbonyl complexes (2 to 8) will release CO efficiently. The calculated results also suggest the transfer of electron density from the electron-rich metal centers to π molecular orbitals of the ligand via strong metal-to-ligand charge transfer (MLCT) in the visible/near-IR region. The strong MLCT results weaken the metal-CO back bonding and promote the speedy CO-release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Toscani A, Hind C, Clifford M, Kim S-H, Gucic A, Woolley C, Saeed N, Rahman KM, Sutton JM, Castagnolo D (2021) Eur J Med Chem 213:113172

    Article  CAS  Google Scholar 

  2. Turner JJ, George MW, Poliakoff M, Perutz RN (2022) Chem Soc Rev 51:5300–5329

    Article  CAS  Google Scholar 

  3. Amorim AL, Guerreiro A, Glitz VA, Coimbra DF, Bortoluzzi AJ, Caramori GF, Braga AL, Neves A, Bernardes GJL, Peralta RA (2020) New J Chem 44:10892–10901

    Article  CAS  Google Scholar 

  4. Motterlini R, Otterbein LE (2010) Nat Rev Drug Discovery 9:728–743

    Article  CAS  Google Scholar 

  5. Foresti R, Bani-Hani MG, Motterlini R (2008) Intensive Care Med 34:649–658

    Article  CAS  Google Scholar 

  6. Vincent JL (2003) Lancet 361:2068–2077

    Article  Google Scholar 

  7. Cheng J, Jinming H (2021) ChemMedChem 16(24):3628–3634. https://doi.org/10.1002/cmdc.202100555

    Article  CAS  Google Scholar 

  8. Heinemann SH, Hoshi T, Westerhausen M, Schiller A (2014) Chem Commun 50:3644–3660

    Article  CAS  Google Scholar 

  9. Romao CC, Blattler WA, Seixas JD, Bernardes GJL (2012) Chem Soc Rev 41:3571–3583

    Article  CAS  Google Scholar 

  10. Douglas CG, Haldane JS, Haldane JBS (1912) J Physiol 44:275–304

    Article  CAS  Google Scholar 

  11. Haldane JB (1927) Biochem J 21:1068–1075

    Article  CAS  Google Scholar 

  12. Mann BE (2012) Organometallics 31:5728–5735

    Article  CAS  Google Scholar 

  13. Alberto R, Motterlini R (2007). Dalton Trans. https://doi.org/10.1039/b701992k

    Article  Google Scholar 

  14. Shatzschneider U (2015) Br J Pharmacol 172:1638–1650

    Article  Google Scholar 

  15. Askes SHC, Reddy GU, Wyrwa R, Bonnet S, Schiller A (2017) J Am Chem Soc 139:15292–15295

    Article  CAS  Google Scholar 

  16. Reddy UG, Liu J, Gorls H, Askes SHC, Schiller A, Hoffmann P, Neugebauer U, Steinmetzer J, Kupfer S, Grafe S (2017) Chem Sci 8:6555–6560

    Article  Google Scholar 

  17. Schatzschneider U (2011) Inorg Chim Acta 374:19–23

    Article  CAS  Google Scholar 

  18. Zobi F (2013) Future. Med Chem 5:175–188

    CAS  Google Scholar 

  19. Compain JD, Bourrez M, Haukka M, Deronzier A, Chardon-Noblat S (2014) Chem Commun 50:2539–2542

    Article  CAS  Google Scholar 

  20. Stamellou E, Storz D, Botov S, Ntasis E, Wedel J, Sollazzo S, Krämer BK, van Son W, Seelen M, Schmalz HG, Schmidt A (2014) Redox Biol 2:739–748

    Article  CAS  Google Scholar 

  21. Betts JW, Roth P, Pattrick CA, Southam HM, La Ragione RM, Poole RK, Schatzschneider U (2020) Metallomics 10:1563–1575

    Article  Google Scholar 

  22. Gessner N, Bäck AK, Knorr J, Nagel C, Marquetand P, Schatzschneider U, González L, Nuernberger P (2021) Phys Chem Chem Phys 23(42):24187–24199. https://doi.org/10.1039/D1CP03514

    Article  CAS  Google Scholar 

  23. Benniston AC, Zeng L (2022) Dalton Trans 51:4202–4212

    Article  CAS  Google Scholar 

  24. Fairlamb IJS, Lynam JM, Hirao T, Moriuchi T, Elsevier 2019,137–154

  25. Aucott BJ, Eastwood JB, Hammarback LA, Clark IP, Sazanovich IV, Towrie M, Fairlamb IJS (2019) J M Lynam Dalton Trans 48:16426

    Article  CAS  Google Scholar 

  26. Tinajero-Trejo M, Rana N, Nagel C, Jesse HE, Smith TW, Wareham LK, Hippler M, Schatzschneider U, Poole RK (2016) Antioxid Redox Signal 24:765–780

    Article  CAS  Google Scholar 

  27. Nagel C, McLean S, Poole RK, Braunschweig H, Kramer T, Schatzschneider U (2014) Dalton Trans 43:9986–9997

    Article  CAS  Google Scholar 

  28. Pfeiffer H, Sowik T, Schatzschneider U (2013) J Organomet Chem 734:17–24

    Article  CAS  Google Scholar 

  29. Govender P, Pai S, Schatzschneider U, Smith GS (2013) Inorg Chem 52:5470–5478

    Article  CAS  Google Scholar 

  30. Carrington SJ, Chakraborty I, Mascharak PK (2013) Chem Commun 49:11254–11256

    Article  CAS  Google Scholar 

  31. Mohr F, Niesel J, Schatzschneider U, Lehmann CW, Anorg Z (2012) Allg Chem 638:543–546

    Article  CAS  Google Scholar 

  32. Niesel J, Pinto A, Peindy HW, N’Dongo KM, Ott I, Gust R, Schatzschneider U (2008). Chem Commun. https://doi.org/10.1039/b719075a

    Article  Google Scholar 

  33. Jiang Q, Xia Y, Barrett J, Mikhailovsky A, Wu G, Wang D, Shi P, Ford PC (2019) Inorg Chem 58:11066–11075

    Article  CAS  Google Scholar 

  34. Rana N, Jesse HE, Tinajero-Trejo M, Butler JA, Tarlit JD, Milena L, Nagel C, Schatzschneider U, Poole RK (2017) Microbiology 163:1477

    Article  CAS  Google Scholar 

  35. Betts J, Nagel C, Schatzschneider U, Poole R, La Ragione RM (2017) PLoS ONE 12:e186359

    Article  Google Scholar 

  36. W. Huber, R. Linder, J. Niesel, U. Schatzschneider, B. Spingler, P. C. Kunz, (2012) Eur. J. Inorg. Chem., 3140–3146.

  37. Kottelat E, Ruggi A, Zobi F (2016) Dalton Trans 45:6920–6927

    Article  CAS  Google Scholar 

  38. Marques AR, Kromer L, Gallo DJ, Penacho N, Rodrigues SS, Seixas JD, Bernardes GJL, Reis PM, Otterbein SL, Ruggieri RA, Goncalves ASG, Goncalves AML, De Matos MN, Bento I, Otterbein LE, Blattler WA, Romao CC (2012) Organometallics 31:5810–5822

    Article  CAS  Google Scholar 

  39. Ji X, Damera K, Zheng Y, Yu B, Otterbein LE, Wang B (2016) J Pharm Sci 105:406–416

    Article  CAS  Google Scholar 

  40. Yuan Z, Yang X, Wang B (2021) Chem Sci 12:13013–13020

    Article  CAS  Google Scholar 

  41. Romanski S, Kraus B, Guttentag M, Schlundt W, Rucker H, Adler A, Neudorfl J-M, Alberto R, Amslinger S, Schmalz H-G (2012) Dalton Trans 41:13862–13875

    Article  CAS  Google Scholar 

  42. Aucott BJ, Ward JS, Andrew SG, Milani J, Whitwood AC, Lynam JM, Parkin A, Fairlamb IJS (2017) Inorg Chem 56:5431–5440

    Article  CAS  Google Scholar 

  43. Fairlamb IJS, Duhme-Klair AK, Lynam JM, Moulton BE, O’Brien CT, Sawle P, Hammad J, Motterlini R (2006) Bioorg Med Chem Lett 16:995–998

    Article  CAS  Google Scholar 

  44. I. J. S. Fairlamb, J. M. Lynam, B. E. Moulton, I. E. Taylor, A. K. Duhme-Klair, P. Sawle and R. Motterlini, (2007). Dalton Trans. 3603–3605.

  45. Atkin AJ, Williams S, Sawle P, Motterlini R, Lynam JM, Fairlamb IJS, Atkin AJ, Williams S, Sawle P, Motterlini R, Lynam JM, Fairlamb IJS (2009) Dalton Trans 38:3653–3656

    Article  Google Scholar 

  46. Zhang WQ, Atkin AJ, Thatcher RJ, Whitwood AC, Fairlamb IJS, Lynam JM (2009) Dalton Trans 38:4351–4358

    Article  Google Scholar 

  47. Zhang WQ, Whitwood AC, Fairlamb IJS, Lynam JM (2010) Inorg Chem 49:8941–8952

    Article  CAS  Google Scholar 

  48. Ji X, De La Cruz LKC, Pan Z, Chittavong V (2017) Chem Commun 53:9628–9631

    Article  CAS  Google Scholar 

  49. Motterlini R, Mann BE, Scapens DA (2005) Expert Opin. Investig Drug 14:1305–1318

    CAS  Google Scholar 

  50. Reddy GU, Axthelm J, Hoffmann P, Taye N, Gläser S, Görls H, Hopkins SL, Plass W, Neugebauer U, Bonnet S et al (2017) J Am Chem Soc 139:4991–4994

    Article  Google Scholar 

  51. Sakla R, Jose DA (2021) Inorg Chim Acta 516:120134

    Article  CAS  Google Scholar 

  52. Mitra A, Jana G, Pal R, Gaikwad P, Sural S, Chattaraj PK (2021) Theoret Chem Acc 140:1–12

    Article  Google Scholar 

  53. R. D. Dennington, T. A. Keith, J. M. Millam, (2008) GaussView 5.0.8, Gaussian

  54. O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comput Chem 29:839–845

    Article  Google Scholar 

  55. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

  56. Cotton FA, Kraihanzel CS (1962) J Am Chem Soc 84:4432–4438

    Article  CAS  Google Scholar 

  57. A. M. Mansour., Polyhedron.2016, 99, 109.

  58. Mansour AM (2013) Inorg Chim Acta 436:394

    Google Scholar 

  59. Chakraborty I, Carrington SJ, Mascharak PK (2014) Acc Chem Res 47:2603–2611

    Article  CAS  Google Scholar 

  60. Monari A, Assfeld X, Baley M, Gros PC (2011) J Phys Chem 115(15):3596–3603

    Article  CAS  Google Scholar 

  61. Wang HT, Taufany F, Nachimuthu S, Jiang JC (2014) J Comput Aided Mol Des 28:565–575

    Article  CAS  Google Scholar 

  62. Sakla R, Singh A, Kaushik R, Kumar P, Jose DA (2019) Inorg Chem 58:10761–10768

    Article  CAS  Google Scholar 

  63. Li Y, Li H, Zhao X, Chen M (2010) J Phys Chem A 114:6972–6977

    Article  CAS  Google Scholar 

  64. Duan YA, Geng Y, Li HB, Jin JL, Wu Y, Su ZM (2013) J Comput Chem 34:1611–1619

    Article  CAS  Google Scholar 

  65. Beenken WJ, Pullerits T (2004) J Phys Chem B 108:6164–6169

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ajeet Singh acknowledges to Science and Engineering Research Board (SERB) New Delhi for financial support (Ref. no. CRG/2019/001032) under core research grant.

Funding

The authors received no financial support for the research, authorship and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

RS and DAJ conceived the study. SKY and RK performed and analyze the DFT calculated data. RS, SKY, AS participated in interpretation and drafting the manuscript. AS and DAJ supervised the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ajeet Singh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4266 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seth, R., Jose, D.A., Yadav, S.K. et al. Quest of new molecular frameworks for photoinduced carbon monoxide-releasing molecules: a computational prospective. Theor Chem Acc 141, 79 (2022). https://doi.org/10.1007/s00214-022-02937-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02937-y

Keywords

Navigation