Skip to main content
Log in

Theoretical investigation of the mechanism of ethanol to propene catalyzed by phosphorus-modified FAU zeolite

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The reaction mechanism of ethanol to propene (ETP) on phosphorus-modified acidic FAU (H-FAU) zeolite has been theoretically investigated by a two-layer ONIOM (our Own N-layered Integrated molecular Orbital and molecular Mechanics) method. The ETP mechanism is divided into four reaction pathways from I to IV. The calculated data suggest that the rate-determining steps are the dehydration of ethanol (for pathways I and II) and the ethylation of propene (for pathways III and IV). Different reaction steps are in the following order of reactivity: dimerization > proton transfer ≥ deprotonation > beta-scission > ethylation > dehydration of ethanol. Pathways I and II have almost the same reactivity as pathways III and IV. The addition of phosphorus atom decreases the energy barriers of elementary steps and is more favorable for the ETP process than the acidic Si/Al zeolite without phosphorus modification. The differential charge density (DCD), local orbital locator (LOL) and reduced density gradient (RDG) plots reveal the electron migration and the nature of transition states. The RDG plots show that there are attractive and spatial repulsive van der Waals (VDW) interactions between different organic fragments of TSs. The DCD analysis reveals that the electrons migrate from an organic fragment to another fragment. The LOL maps suggest that there are weak covalent interactions between the atoms in the forming or breaking chemical bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Matheus CRV, Chagas LH, Gonzalez GG, Aguiar EFS, Appel LG (2018) Synthesis of propene from ethanol: a mechanistic study. ACS Catal 8:7667–7678. https://doi.org/10.1021/acscatal.8b01727

    Article  CAS  Google Scholar 

  2. Akah A, Al-Ghrami M (2015) Maximizing propylene production via FCC technology. Appl Petro Res 5:377–392. https://doi.org/10.1007/s13203-015-0104-3

    Article  CAS  Google Scholar 

  3. Xu T, Zhang QH, Song H, Wang Y (2012) Fluoride-treated H-ZSM-5 as a highly selective and stable catalyst for the production of propylene from methyl halides. J Catal 295:232–241. https://doi.org/10.1016/j.jcat.2012.08.014

    Article  CAS  Google Scholar 

  4. Sadrameli SM (2019) Thermal/catalytic cracking of hydrocarbons for the production of olefins; a state-of-the-art review III: Process modeling and simulation. Fuel 252:553–566. https://doi.org/10.1016/j.fuel.2019.04.127

    Article  CAS  Google Scholar 

  5. Zhang C, Andrew Ng KL, Yan LX, Feng X, Jiang BB, Liao ZW, Wang JD, Yang YR (2022) Kinetic perspective on methanol to propylene process via HZSM-5 catalyst: balancing between reaction and diffusion. Ind Eng Chem Res 61:2055–2067. https://doi.org/10.1021/acs.iecr.1c04589

    Article  CAS  Google Scholar 

  6. Mazoyer E, Kai CS, Basset JM, Nicholas CP, Taoufik M (2012) High selectivity production of propylene from 2-butene: non-degenerate pathways to convert symmetric olefins via olefin metathesis. Chem Commun 48:3611–3613. https://doi.org/10.1039/C2CC30172E

    Article  CAS  Google Scholar 

  7. Licht RB, Bell AT (2017) A DFT investigation of the mechanism of propene ammoxidation over α-bismuth molybdate. ACS Catal 7:161–176. https://doi.org/10.1021/acscatal.6b02523

    Article  CAS  Google Scholar 

  8. Pyatnitsky YI, Dolgikh LY, Senchilo LM, Staraya LA, Strizhak PE (2019) Catalytic two-step process for the production of propylene from bioethanol. Theor Exp Chem 55:50–55. https://doi.org/10.1007/s11237-019-09595-5

    Article  CAS  Google Scholar 

  9. Phung TK, Pham TLM, Vu KB, Busca G (2021) (Bio)Propylene production processes: A critical review. J Environ Chem Eng 9: 105673. https://www.sciencedirect.com/science/article/pii/S2213343721006503

  10. Marcu I-C, Didier T, Fajula F, Tanchoux N (2009) Catalytic valorization of bioethanol over Cu-Mg-Al mixed oxide catalysts. Catal Today 147:231–238. https://doi.org/10.1016/j.cattod.2009.04.004

    Article  CAS  Google Scholar 

  11. Wang S, Wang PF, Qin ZF, Chen YY, Dong M, Li JF, Zhang K, Liu P, Wang JG, Fan WB (2018) Relation of catalytic performance to the aluminum siting of acidic zeolites in the conversion of methanol to olefins, viewed via a comparison between ZSM-5 and ZSM-11. ACS Catal 8:5485–5505. https://doi.org/10.1021/acscatal.8b01054

    Article  CAS  Google Scholar 

  12. Li JW, Li T, Ma HF, Sun QW, Ying WY, Fang DY (2015) Effect of impregnating Fe into P-modified HZSM-5 in the coupling cracking of butene and pentene. Ind Eng Chem Res 54:1796–1805. https://doi.org/10.1021/ie504629p

    Article  CAS  Google Scholar 

  13. Zhang N, Mao DS, Zhai XL (2017) Selective conversion of bio-ethanol to propene over nano-HZSM-5 zeolite: remarkably enhanced catalytic performance by fluorine modification. Fuel Process Technol 167:50–60. https://doi.org/10.1016/j.fuproc.2017.06.028

    Article  CAS  Google Scholar 

  14. Takahashi A, Xia W, Nakamura I, Shimada H, Fujitani T (2012) Effects of added phosphorus on conversion of ethanol to propylene over ZSM-5 catalysts. Appl Catal A-Gen 423–424:162–167. https://doi.org/10.1016/j.apcata.2012.02.029

    Article  CAS  Google Scholar 

  15. Tsunoji N, Osuga R, Yasumoto M, Yokoi T (2021) Controlling hydrocarbon oligomerization in phosphorus-modified CHA zeolite for a long-lived methanol-to-olefin catalyst. Appl Catal A-Gen 620:118176. https://doi.org/10.1016/j.apcata.2021.118176

    Article  CAS  Google Scholar 

  16. Kumar G, Ren L, Pang YT, Li XY, Chen H, Gulbinski J, Dauenhauer PJ, Tsapatsis M, Abdelrahman OA (2021) Acid sites of phosphorus-modified zeosils. ACS Catal 11:9933–9948. https://doi.org/10.1021/acscatal.1c01588

    Article  CAS  Google Scholar 

  17. Xue YF, Niu YL, Zheng HY, Cui XJ, Ma QG, Tang JK, Ding LF (2021) Selective dealumination of ZSM-5 by steaming and its effect on ethanol to propene. J Fuel Chem Techno 49:1111–1121. https://doi.org/10.1016/S1872-5813(21)60064-6

    Article  Google Scholar 

  18. Xue FQ, Miao CX, Yue YH, Hua WM, Gao Z (2019) Sc2O3-promoted composite of In2O3 and Beta zeolite for direct conversion of bio-ethanol to propylene. Fuel Process Technol 186:110–115. https://doi.org/10.1016/j.fuproc.2018.12.024

    Article  CAS  Google Scholar 

  19. Song Z, Takahashi A, Nakamura I, Fujitani T (2010) Phosphorus-modified ZSM-5 for conversion of ethanol to propylene. Appl Catal A-Gen 384:201–205. https://doi.org/10.1016/j.apcata.2010.06.035

    Article  CAS  Google Scholar 

  20. Ramesh K, Chang J, Han YF, Borgna A (2010) Synthesis, characterization, and catalytic activity of phosphorus modified H-ZSM-5 catalysts in selective ethanol dehydration. Ind Eng Chem Res 49:4080–4090. https://doi.org/10.1021/ie901666f

    Article  CAS  Google Scholar 

  21. Kakiuchi Y, Tanigawa T, Tsunoji N, Takamitsu Y, Sadakane M, Sano T (2019) Phosphorus modified small-pore zeolites and their catalytic performances in ethanol conversion and NH3-SCR reactions. Appl Catal A-Gen 575:204–213. https://doi.org/10.1016/j.apcata.2019.02.026

    Article  CAS  Google Scholar 

  22. Jun JW, Kim TW, Hong SI, Kim JW, Jhung SH, Kim CU (2018) Selective and stable production of ethylene from propylene over surface-modified ZSM-5 zeolites. Catal Today 303:86–92. https://doi.org/10.1016/j.cattod.2017.10.004

    Article  CAS  Google Scholar 

  23. Inaba M, Murata K, Takahara I, Inoue K (2011) Production of olefins from ethanol by Fe and/or P-modified H-ZSM-5 zeolite catalysts. J Chem Technol Biot 86:95–104. https://doi.org/10.1002/jctb.2519

    Article  CAS  Google Scholar 

  24. Song ZX, Liu W, Chen C, Takahashi A, Fujitani T (2013) Production of propylene from ethanol over ZSM-5 co-modified with zirconium and phosphorus. React Kinet Mech Cat 109:221–231. https://doi.org/10.1007/s11144-013-0546-5

    Article  CAS  Google Scholar 

  25. Huangfu JJ, Mao DS, Zhai XL, Guo QS (2016) Remarkably enhanced stability of HZSM-5 zeolite co-modified with alkaline and phosphorous for the selective conversion of bio-ethanol to propylene. Appl Catal A-Gen 520:99–104. https://doi.org/10.1016/j.apcata.2016.04.016

    Article  CAS  Google Scholar 

  26. Yin JB, Guo XX, Sun YX, Han S, Li QG (2021) Understanding the nanoconfinement effect on the ethanol-to-propene mechanism catalyzed by acidic ZSM-5 and FAU zeolites. J Phys Chem C 125:310–334. https://doi.org/10.1021/acs.jpcc.0c07614

    Article  CAS  Google Scholar 

  27. Hriljac J, Eddy M, Cheetham A, Donohun J, Ray G (1993) Powder neutron diffraction and 29Si MAS NMR studies of siliceous zeolite-Y. J Solid State Chem 106:66–72. https://doi.org/10.1006/jssc.1993.1265

    Article  CAS  Google Scholar 

  28. Lundberg M, Sasakura Y, Zheng GS, Morokuma K (2010) Case studies of ONIOM(DFT:DFTB) and ONIOM(DFT:DFTB:MM) for enzymes and enzyme mimics. J Chem Theory Comput 6:1413–1427. https://doi.org/10.1021/ct100029p

    Article  CAS  Google Scholar 

  29. Maseras F, Morokuma K (1995) IMOMM: A new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states. J Comput Chem 16:1170–1179. https://doi.org/10.1002/jcc.540160911

    Article  CAS  Google Scholar 

  30. Zhao Y, Truhlar DG (2008) Benchmark data for interactions in zeolite model complexes and their use for assessment and validation of electronic structure methods. J Phys Chem C 112:6860–6868. https://doi.org/10.1021/jp7112363

    Article  CAS  Google Scholar 

  31. Rappé AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035. https://doi.org/10.1021/ie901666f

    Article  CAS  Google Scholar 

  32. Zhao Y, Truhlar DG (2007) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241. https://doi.org/10.1007/s00214-007-0401-8

    Article  CAS  Google Scholar 

  33. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  34. Heinz H, Suter UW (2004) Atomic charges for classical simulations of polar system. J Phys Chem B 108:18341–18352. https://doi.org/10.1021/jp048142t

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, et al (2009) Gaussian 09, Revision A.01. Gaussian, Inc., Wallingford CT.

  36. Li HS, Ji Y, Wang F, Li SF, Sun Q, Jia Y (2011) Ab initio study of larger Pbn clusters stabilized by Pb7 units possessing significant covalent bonding. Phys Rev B: Condens Matter Mater Phys 83:075429. https://doi.org/10.1103/PhysRevB.83.075429

    Article  CAS  Google Scholar 

  37. Chu YY, Han B, Zheng AM, Yi XF, Deng F (2013) Pore selectivity for olefin protonation reactions confined inside mordenite zeolite: a theoretical calculation study. J Phys Chem C 117:2194–2202. https://doi.org/10.1021/jp311264u

    Article  CAS  Google Scholar 

  38. Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  39. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-Garcia J, Cohen AJ, Yang WT (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506. https://doi.org/10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang YF, Zhao JF, Li YQ (2016) Theoretical study of the ESIPT process for a new natural product quercetin. Sci Rep 6:32152–32160. https://doi.org/10.1038/srep32152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Becke AD (2000) Simulation of delocalized exchange by local density functionals. J Chem Phys 112:4020–4026. https://doi.org/10.1063/1.480951

    Article  CAS  Google Scholar 

  42. Kondo JN, Ishikawa H, Yoda E, Wakabayashi F, Domen K (1999) Structure of dimerized alkoxy species of 2-methylpropene on zeolites and silica-alumina studied by FT-IR. J Phys Chem B 103:8538–8543. https://doi.org/10.1021/jp991395f

    Article  CAS  Google Scholar 

  43. Kondo JN, Ito K, Yoda E, Wakabayashi F, Domen K (2005) An ethoxy intermediate in ethanol dehydration on Brønsted acid sites in zeolite. J Phys Chem B 109:10969–10972. https://doi.org/10.1021/jp050721q

    Article  CAS  PubMed  Google Scholar 

  44. Haw JF, Nicholas JB, Song WG, Deng F, Wang ZK, Xu T, Heneghan CS (2000) Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5. J Am Chem Soc 122:4763–4775. https://doi.org/10.1021/ja994103x

    Article  CAS  Google Scholar 

  45. Murdoch JR (1981) What is the rate-limiting step of a multistep reaction? J Chem Educ 58:32–36. https://doi.org/10.1021/ed058p32

    Article  CAS  Google Scholar 

  46. Wang S, Chen YY, Wei ZH, Qin ZF, Ma H, Dong M, Li JF, Fan WB, Wang JG (2015) Polymethylbenzene or alkene cycle? Theoretical study on their contribution to the process of methanol to olefins over H-ZSM-5 zeolite. J Phys Chem C 119:28482–28498. https://doi.org/10.1021/acs.jpcc.5b10299

    Article  CAS  Google Scholar 

  47. Ren QH, Rybicki M, Sauer J (2020) Interaction of C3–C5 alkenes with zeolitic Brønsted acid: π-complexes, alkoxides, and carbenium ions in H-FER. J Phys Chem C 124:10067–10078. https://doi.org/10.1021/acs.jpcc.0c03061

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Development Foundation for young and middle-aged scientific talents of Shanghai Institute of Technology (Project Number ZQ2022-4), the National Natural Science Foundation of China (Project Number 21203118, 22008155, 22075183, 21878188 and 21975161), IIASA Young Scientists Summer Program (Project Number 21411140044), Science and Technology Commission of Shanghai Municipality Project (Project Number 18090503800), Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (Project Number 18SG52), Chenguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (Project Number 19CG69), the Talent Development Foundation of Shanghai (Project Number 2018034), Shanghai Gaofeng & Gaoyuan Project for University Academic Program Development, the Research Fund of Department of Education of Sichuan Province (No. 18ZB0481), Development of integrated membrane technology for deep treatment of ammonia nitrogen wastewater from rare earth industry (J2018-61), Development of Metal-supported Catalysts for Thiophene Desulfurization (J2019-360), Simulation of Thermal Conductivity of Polymer Matrix Composites (J2020-50–2), Natural Science Foundation of Shanghai (No.19ZR1454900).

Author information

Authors and Affiliations

Authors

Contributions

Qiaoxian Tong wrote the main manuscript text and prepared all figures and tables. Yingxin Sun, Sheng Han, and Qianggen Li contributed to conceptualization. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Yingxin Sun, Sheng Han or Qianggen Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

214_2022_2911_MOESM1_ESM.pdf

Free energy profiles of pathways II, III, and IV, optimized structures of all the TSs and intermediates, plots of DCDs, RDGs, and LOLs (Figures S1 to S51) (Supplementary file1 (PDF 4673 KB)).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, Q., Xia, M., Sun, H. et al. Theoretical investigation of the mechanism of ethanol to propene catalyzed by phosphorus-modified FAU zeolite. Theor Chem Acc 141, 54 (2022). https://doi.org/10.1007/s00214-022-02911-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02911-8

Keywords

Navigation