Skip to main content
Log in

Two-dimensional graphene-like g- and β-XC7 (X = B, Al, N, P, and Ge) sheets: structural and electronic properties

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The structural and electronic properties of XC7 (X = B, Al, N, P, Ge) sheets were investigated through first-principles calculations. Two types of graphene-like sheets named g- and β-XC7 with honeycomb lattice structures were considered. Their cohesive energies indicate that these sheets are energetically favorable. Both g- and β-XC7 sheets were found to have good stabilities. The results indicate that g-GeC7 and β-GeC7 sheets, as well as g-SiC7 and β-SiC7 sheets, are semiconductors. Their band gaps are dependent on the arrangement of Ge and C atoms. For X = B, Al, N, and P, the g- and β-XC7 sheets are predicted to have metallic properties. Our results show that graphene-like XC7 sheets with proper electronic properties may be good candidates for applications in modern and future nanoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Geim AK (2009) Science 324:1530

    Article  CAS  PubMed  Google Scholar 

  2. Wu YH, Yu T, Shen ZX (2010) J Appl Phys 108:071301

    Article  CAS  Google Scholar 

  3. Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81:109

    Article  CAS  Google Scholar 

  4. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Nature 438:197

    Article  CAS  PubMed  Google Scholar 

  5. Zhang YB, Tan YW, Stormer HL, Kim P (2005) Nature 438:201

    Article  CAS  PubMed  Google Scholar 

  6. Nag A, Mitra A, Mukhopadhya SC (2018) Sensor Actuat A: Phys 270:177

    Article  CAS  Google Scholar 

  7. Ren S, Rong P, Yu Q (2018) Ceram Iner 44:11940

    Article  CAS  Google Scholar 

  8. Jariwala D, Srivastava A, Ajayan PM (2011) J Nanosci Nanotechnol 11:6621

    Article  CAS  PubMed  Google Scholar 

  9. Rani P, Jindal VK (2013) RSC Adv 3:802

    Article  CAS  Google Scholar 

  10. Angizi S, Akbar MdA, Darestani-Farahani M, Kruse P, ECS, (2020) J Solid State Sci Technol 9:083004

    Article  CAS  Google Scholar 

  11. Xu M, Liang T, Shi M, Chen H (2013) Chem Rev 113:3766

    Article  CAS  PubMed  Google Scholar 

  12. Long H, Hu J, Xie X, Hu P, Wang S, Wen M, Zhang X, Wu F, Dong H (2021) J Phys D: Appl Phys 54:225102

    Article  CAS  Google Scholar 

  13. Yaghoubi A, Masenelli-Varlot K, Boisron O, Ramesh S, Melinon P (2018) Chem Mater 30:7234

    Article  CAS  Google Scholar 

  14. Zhou LJ, Zhang YF, Wu LM (2013) Nano Lett 13:5431

    Article  CAS  PubMed  Google Scholar 

  15. Zhou L, Dong H, Tretiak S (2020) Nanoscale 12:4269

    Article  CAS  PubMed  Google Scholar 

  16. Guan J, Zhang L, Deng K, Du Y, Kan E (2019) Adv Theor Simul 2:1900058

    Article  CAS  Google Scholar 

  17. Dong H, Zhou L, Frauenheim T, Hou T, Lee S-T, Li Y (2016) Nanoscale 8:6994

    Article  CAS  PubMed  Google Scholar 

  18. Majidi R, Ayesh AI (2021) Mol Phys 119:e1969600

    Article  CAS  Google Scholar 

  19. Zhao M, Zhang R (2014) Phys Rev B 89:195427

    Article  CAS  Google Scholar 

  20. Qin X, Wu Y, Liu Y, Chi B, Li X, Wang Y, Zhao X (2017) Sci Rep 7:10546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hussain T, Farokh Niaei AH, Searles DJ, Hankel M (2019) J Phys Chem C 123:27295

    Article  CAS  Google Scholar 

  22. Zheng F, Dong H, Ji Y, Li Y (2019) Appl Surf Sci 469:316

    Article  CAS  Google Scholar 

  23. Houmad M, Mohammed MH, Masrour R, El Kenz A, Benyoussef A (2019) J Phys Chem Solids 127:231

    Article  CAS  Google Scholar 

  24. Ding Y, Wang Y (2014) J Phys Chem C 118:4509

    Article  CAS  Google Scholar 

  25. Tomanek D, Wentzcovitch RM, Louie SG, Cohen ML (1998) Phys Rev B 37:3134

    Article  Google Scholar 

  26. Hu QK, Wu QH, Ma YM, Zhang LJ, Liu ZY, He JL, Sun H, Wang HT, Tian YJ (2006) Phys Rev B 73:214116

    Article  CAS  Google Scholar 

  27. Xue-Ling L, Gang L, Mu-Sheng W, Bo X, Chu-Ying O, Bi-Cai P (2013) Chin Phys Lett 30:066102

    Article  CAS  Google Scholar 

  28. Ding Y, Ni J (2009) J Phys Chem C 113:18468

    Article  CAS  Google Scholar 

  29. Ozaki T, Kino H, Yu J, Han MJ, Kobayashi N, Ohfuti M, Ishii F et al. User's Manual of OpenMX Version 3.8, http://www.openmx-square.org

  30. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  31. Nose S (1984) J Chem Phys 81:511

    Article  CAS  Google Scholar 

  32. Nose S (1984) Mol Phys 52:255

    Article  CAS  Google Scholar 

  33. Hoover GH (1985) Phys Rev A 31:1695

    Article  CAS  Google Scholar 

  34. Ordejon P, Artacho E, Soler JM (1996) Phys Rev B 53:10441

    Article  Google Scholar 

  35. Troullier N, Martins JL (1991) Phys Rev B 43:1993

    Article  CAS  Google Scholar 

  36. Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002) J Phys: Condens Matter 14:2745

    CAS  Google Scholar 

  37. Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Science 323:610

    Article  CAS  PubMed  Google Scholar 

  38. Shin H, Kang S, Koo J, Lee H, Kim J, Kwon Y (2014) J Phys Chem 140:114702

    Article  CAS  Google Scholar 

  39. Majidi R (2016) Cand J Phys 94:305

    Article  CAS  Google Scholar 

  40. Koskinen P, Malola S, Hakkinen H (2008) Phys Rev Lett 101:115502

    Article  PubMed  CAS  Google Scholar 

  41. Ivanovskaya VV, Zobelli A, Teillet-Billy D, Rougeau N, Sidis V, Briddon PR (2010) Eur Phys J B 76:481

    Article  CAS  Google Scholar 

  42. Qin XM, Liu Y, Chi BQ, Zhao XL, Li XW (2016) Nanoscale 8:15223

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work is supported by Shahid Rajaee Teacher Training University under grant number 3564.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roya Majidi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 52 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majidi, R., Rabczuk, T. Two-dimensional graphene-like g- and β-XC7 (X = B, Al, N, P, and Ge) sheets: structural and electronic properties. Theor Chem Acc 141, 44 (2022). https://doi.org/10.1007/s00214-022-02906-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02906-5

Keywords

Navigation