Skip to main content
Log in

The ethanol–metal interaction in bimetallic clusters of Pt and Rh

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The comprehension of the reaction mechanism for ethanol steam reforming over metal particles requires the knowledge of the forces governing the ethanol–metal interaction. In this work, we used a combination of wave function analysis techniques (NCI, QTAIM, CMOEDA and NBO) to unveil the chemical origin of the ethanol–metal interaction in bimetallic clusters of Pt and Rh of varied proportions (Pt\(_5\)Rh, Pt\(_4\)Rh\(_2\), Pt\(_3\)Rh\(_3\), Pt\(_2\)Rh\(_4\) and PtRh\(_5\)). These clusters are highly polarized with the Pt atoms bearing the negative charge. This polarization guides the interaction with ethanol which complexes by orienting an oxygen lone pair over the most positive cluster site. In this way, a O–Rh contact is observed in most of the bimetallic clusters, although in the pure clusters the O–Pt interaction is stronger. QTAIM shows that the O–Metal interaction in the bimetallic clusters weakens as more Rh atoms are present, but the final complexation energy is a balance between several factors. NBO analysis describes the complexation as a compromise between donation of charge from oxygen to the cluster, back donation from the cluster to oxygen and, in some cases, the formation of a hydrogen bond involving the O–H bond and a partially negative Pt atom in the cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Afonso RV, Gouveia JD, Gomes JRB (2021) Catalytic reaction for H\(_2\) production on multimetallic surfaces: a review. J Phys Energy 3:032016. https://doi.org/10.1088/2515-7655/ac0d9f

    Article  CAS  Google Scholar 

  2. Antolini E (2016) Structural parameters of supported fuel cell catalysts: the effect of particle size, inter-particle distance and metal loading on catalytic activity and fuel cell performance. Appl Catal B 181:298–313. https://doi.org/10.1016/j.apcatb.2015.08.007

    Article  CAS  Google Scholar 

  3. Auprêtre F, Descorme C, Duprez D (2002) Bio-ethanol catalytic steam reforming over supported metal catalysts. Catal Commun 3(6):263–267. https://doi.org/10.1016/S1566-7367(02)00118-8

    Article  Google Scholar 

  4. Bader RF (1994) Atoms in molecules: a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  5. Ball M, Wietschel M (2009) The future of hydrogen - opportunities and challenges. Int J Hydrog Energy 34(2):615–627. https://doi.org/10.1016/j.ijhydene.2008.11.014

    Article  CAS  Google Scholar 

  6. Becke AD (1993) Density-functional thermochemistry III The role of exact exchange. J Chem Phys 98(7):5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  7. Breen J, Burch R, Coleman H (2002) Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications. Appl Catal B 39(1):65–74. https://doi.org/10.1016/S0926-3373(02)00075-9

    Article  CAS  Google Scholar 

  8. Choi Y, Liu P (2011) Understanding of ethanol decomposition on Rh(111) from density functional theory and kinetic Monte Carlo simulations. Catal Today 165(1):64–70. https://doi.org/10.1016/j.cattod.2010.12.017

    Article  CAS  Google Scholar 

  9. Contreras J, Salmones J, Colín-Luna J, Nuño L, Quintana B, Córdova I, Zeifert B, Tapia C, Fuentes G (2014) Catalysts for H2 production using the ethanol steam reforming (a review). Int J Hydrog Energy 39:18835–18853. https://doi.org/10.1016/j.ijhydene.2014.08.072

    Article  CAS  Google Scholar 

  10. Dancini-Pontes I, Fernandes-Machado NR, de Souza M, Pontes RM (2015) Insights into ethanol decomposition over Pt: a DFT energy decomposition analysis for the reaction mechanism leading to C\(_2\)H\(_6\) and CH\(_4\). Appl Catal A 491:86–93. https://doi.org/10.1016/j.apcata.2014.11.038

    Article  CAS  Google Scholar 

  11. Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ (2006) Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 311(5759):362–365. https://doi.org/10.1126/science.1120560

    Article  CAS  PubMed  Google Scholar 

  12. Ferrin P, Simonetti D, Kandoi S, Kunkes E, Dumesic JA, Nørskov JK, Mavrikakis M (2009) Modeling ethanol decomposition on transition metals: a combined application of scaling and Brønsted-Evans-Polanyi relations. J Am Chem Soc 131(16):5809–5815. https://doi.org/10.1021/ja8099322

    Article  CAS  PubMed  Google Scholar 

  13. Verga GL, Russell AE, Skylaris CK (2018) Ethanol, o, and co adsorption on pt nanoparticles: effects of nanoparticle size and graphene support. Phys Chem Chem Phys 20:25918–25930. https://doi.org/10.1039/C8CP04798G

    Article  Google Scholar 

  14. Glendening E, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales C, Karafiloglou P, Landis CR, Weinhold F (2018) NBO 7.0. Theoretical Chemistry Institute, University of Wiscosin, Madison, WI

  15. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132(18):6498–6506. https://doi.org/10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rajumon KM, Roberts WM, Wang F, Wells BP (1998) Chemisorption of ethanol at pt(111) and pt(111)-o surfaces. J Chem Soc Faraday Trans 94:3699–3703. https://doi.org/10.1039/A806247A

    Article  CAS  Google Scholar 

  17. Li M, Guo W, Jiang R, Zhao L, Lu X, Zhu H, Fu D, Shan H (2010) Density functional study of ethanol decomposition on Rh(111). J Phys Chem C 114(49):21493–21503. https://doi.org/10.1021/jp106856n

    Article  CAS  Google Scholar 

  18. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  19. Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation. Chem Rev 112(7):4094–4123. https://doi.org/10.1021/cr2000114

    Article  CAS  PubMed  Google Scholar 

  20. Michel C, Auneau F, Delbecq F, Sautet P (2011) C-H versus O-H bond dissociation for alcohols on a Rh(111) surface: a strong assistance from hydrogen bonded neighbors. ACS Catal 1(10):1430–1440. https://doi.org/10.1021/cs200370g

    Article  CAS  Google Scholar 

  21. Molina L, Benito A, Alonso J (2018) Ab initio studies of ethanol dehydrogenation at binary aupd nanocatalysts. Mol Catal 449:8–13. https://doi.org/10.1016/j.mcat.2018.01.023

    Article  CAS  Google Scholar 

  22. Narayanamoorthy B, Datta KKR, Eswaramoorthy M, Balaji S (2014) Highly active and stable Pt3Rh nanoclusters as supportless electrocatalyst for methanol oxidation in direct methanol fuel cells. ACS Catal 4(10):3621–3629. https://doi.org/10.1021/cs500628m

    Article  CAS  Google Scholar 

  23. Perez J, Paganin VA, Antolini E (2011) Particle size effect for ethanol electro-oxidation on Pt/C catalysts in half-cell and in a single direct ethanol fuel cell. J Electroanal Chem 654(1):108–115. https://doi.org/10.1016/j.jelechem.2011.01.013

    Article  CAS  Google Scholar 

  24. Pushkarev AS, Pushkareva IV, Ivanova NA, du Preez SP, Bessarabov D, Chumakov RG, Stankevich VG, Fateev VN, Evdokimov AA, Grigoriev SA (2019) Pt/C and Pt/SnOx/C catalysts for ethanol electrooxidation: rotating disk electrode study. Catalysts. https://doi.org/10.3390/catal9030271

    Article  Google Scholar 

  25. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comp Chem 14:1347–1363. https://doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  26. Sharma YC, Kumar A, Prasad R, Upadhyay SN (2017) Ethanol steam reforming for hydrogen production: latest and effective catalyst modification strategies to minimize carbonaceous deactivation. Renew Sustain Energy Rev 74:89–103. https://doi.org/10.1016/j.rser.2017.02.049

    Article  CAS  Google Scholar 

  27. Shen S, Zhao T, Xu J (2010) Carbon supported PtRh catalysts for ethanol oxidation in alkaline direct ethanol fuel cell. Int J Hydrogen Energy 35(23):12911–12917. https://doi.org/10.1016/j.ijhydene.2010.08.107

    Article  CAS  Google Scholar 

  28. Sheng P, Chiu W, Yee A, Morrison S, Idriss H (2007) Hydrogen production from ethanol over bimetallic Rh-M/CeO2 (M=Pd or Pt). Catal Today 129(3–4):313–321. https://doi.org/10.1016/j.cattod.2006.09.040

    Article  CAS  Google Scholar 

  29. Sheng PY, Yee A, Bowmaker G, Idriss H (2002) H2 production from ethanol over Rh-Pt/CeO2 catalysts: the role of Rh for the efficient dissociation of the carbon-carbon bond. J Catal 208(2):393–403. https://doi.org/10.1006/jcat.2002.3576

    Article  CAS  Google Scholar 

  30. Sheng T, Sun SG (2016) Insight into the promoting role of Rh doped on Pt(111) in methanol electro-oxidation. J Electroanal Chem 781:24–29. https://doi.org/10.1016/j.jelechem.2016.05.023

    Article  CAS  Google Scholar 

  31. Silva TAG, Teixeira-Nete E, López N, Rossi LM (2014) Volcano-like behavior of Au-Pd core shell nanoparticles in the selective oxidation of alcohols. Sci Rep 4:5766. https://doi.org/10.1038/srep05766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stefan G, Stephan E, Lars G (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32(7):1456–1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  Google Scholar 

  33. Su P, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys 131(1):014102. https://doi.org/10.1063/1.3159673

    Article  CAS  PubMed  Google Scholar 

  34. Sutton JE, Vlachos DG (2015) Ethanol activation on closed-packed surfaces. Ind Eng Chem Res 54(16):4213–4225. https://doi.org/10.1021/ie5043374

    Article  CAS  Google Scholar 

  35. Tormena MM, Pontes RM (2020) A DFT/EDA study of ethanol decomposition over Pt, Cu and Rh metal clusters. Mol Catal 482:110694. https://doi.org/10.1016/j.mcat.2019.110694

    Article  CAS  Google Scholar 

  36. Vaidya PD, Rodrigues AE (2006) Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chem Eng J 117(1):39–49. https://doi.org/10.1016/j.cej.2005.12.008

    Article  CAS  Google Scholar 

  37. Wang JH, Lee CS, Lin MC (2009) Mechanism of ethanol reforming: theoretical foundations. J Phys Chem C 113(16):6681–6688. https://doi.org/10.1021/jp810307h

    Article  CAS  Google Scholar 

  38. Yang MM, Bao XH, Li WX (2007) First principle study of ethanol adsorption and formation of hydrogen bond on Rh(111) surface. J Phys Chem C 111(20):7403–7410. https://doi.org/10.1021/jp0686184

    Article  CAS  Google Scholar 

  39. Yuan Q, Zhou Z, Zhuang J, Wang X (2010) Seed displacement, epitaxial synthesis of Rh/Pt bimetallic ultrathin nanowires for highly selective oxidizing ethanol to CO2. Chem Mat 22(7):2395–2402. https://doi.org/10.1021/cm903844t

    Article  CAS  Google Scholar 

  40. Zhang J, Dolg M (2015) Abcluster: the artificial bee colony algorithm for cluster global optimization. Phys Chem Chem Phys 17:24173–24181. https://doi.org/10.1039/C5CP04060D

    Article  CAS  PubMed  Google Scholar 

  41. Zhang J, Dolg M (2016) Global optimization of clusters of rigid molecules using the artificial bee colony algorithm. Phys Chem Chem Phys 16:3003–3010. https://doi.org/10.1039/C5CP06313B

    Article  CAS  Google Scholar 

  42. Zhong W, Liu Y, Zhang D (2012) Catalytic reaction for H\(_2\) production on multimetallic surfaces: a review. J Mol Model 18:3051–3060. https://doi.org/10.1007/s00894-011-1318-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the scholarship from CNPq to G. N. Radael.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo M. Pontes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 11807 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radael, G.N., Martinelli, V. & Pontes, R.M. The ethanol–metal interaction in bimetallic clusters of Pt and Rh. Theor Chem Acc 141, 13 (2022). https://doi.org/10.1007/s00214-022-02877-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02877-7

Keywords

Navigation