Skip to main content
Log in

Theoretical study of the substituent effect on the O–H insertion reaction of copper carbenoids

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this paper, we will study the reactivity along with substituent changes in the OH insertion reaction in copper carbenoids. To this end, we have used M06-2X functional with cc-pVDZ for light atoms and LanL2DZ for copper. We have studied the IRC insertion profiles and analysed reactivity indexes such as electrophilicity (ω) and pKa calculations. We have found that with R1 substitutions phenyl group, R2 substitutions amide group lower the reaction barrier considerably. Concerning the substrate reactions, the most favoured substituent is NO2 in para position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yudin AK (ed) (2010) Catalyzed carbon-heteroatom bond formation. Wiley-VCH Verlag GmbH & Co. KGaA, Wein heim. https://doi.org/10.1002/9783527633388.

  2. Keipour H, Carreras V, Ollevier T (2017) Recent progress in the catalytic carbene insertion reactions into the silicon-hydrogen bond. Org Biomol Chem 15:5441–5456. https://doi.org/10.1039/C7OB00807D

    Article  CAS  PubMed  Google Scholar 

  3. Martín N, Dusselier M, De Vos DE, Cirujano FG (2019) Metal-organic framework derived metal oxide clusters in porous aluminosilicates: a catalyst design for the synthesis of bioactive aza-heterocycles. ACS Catal 9:44–48. https://doi.org/10.1021/acscatal.8b03908

    Article  CAS  Google Scholar 

  4. Liu W, Cheng MJ, Nielsen RJ, Goddard WA, Groves JT (2017) Probing the C-O bond-formation step in metalloporphyrin-catalyzed C-H oxygenation reactions. ACS Catal 7:4182–4188. https://doi.org/10.1021/acscatal.7b00655

    Article  CAS  Google Scholar 

  5. Lohr TL, Li Z, Marks TJ (2016) Thermodynamic strategies for C-O bond formation and cleavage via tandem catalysis. Acc Chem Res 49:824–834. https://doi.org/10.1021/acs.accounts.6b00069

    Article  CAS  PubMed  Google Scholar 

  6. Cheng XF, Li Y, Su YM, Yin F, Wang JY, Sheng J, Vora HU, Wang X-S, Yu J-Q (2013) Pd(II)-catalyzed enantioselective C–H activation/C-O bond formation: synthesis of chiral benzofuranones. J Am Chem Soc 135:1236–1239. https://doi.org/10.1021/ja311259x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Manna K, Kruse ML, Sadow AD (2011) Concerted C-N/C–H bond formation in highly enantioselective yttrium(III)-catalyzed hydroamination. ACS Catal 1:1637–1642. https://doi.org/10.1021/cs200511z

    Article  CAS  Google Scholar 

  8. Kuwabe SI, Torraca KE, Buchwald SL (2001) Palladium-catalyzed intramolecular C-O bond formation. J Am Chem Soc 123:12202–12206. https://doi.org/10.1021/ja012046d

    Article  CAS  PubMed  Google Scholar 

  9. Besora M, Braga AAC, Sameera WMC, Urbano J, Fructos MR, Perez PJ, Maseras F (2015) A computational view on the reactions of hydrocarbons with coinage metal complexes. J Organometall Chem 784:2–12. https://doi.org/10.1016/j.jorganchem.2014.10.009

    Article  CAS  Google Scholar 

  10. Xia Y, Qiu D, Wang J (2017) Transition-metal-catalyzed cross-couplings through carbene migratory insertion. Chem Rev 117:13810–13889. https://doi.org/10.1021/acs.chemrev.7b00382

    Article  CAS  PubMed  Google Scholar 

  11. Ren YY, Zhu SF, Zhou QL (2018) Chiral proton-transfer shuttle catalysts for carbene insertion reactions. Org Biomol Chem 16:3087–3094. https://doi.org/10.1039/C8OB00473K

    Article  CAS  PubMed  Google Scholar 

  12. Yuan H, Nuligonda T, Gao H, Tung C-H, Xu Z (2018) Copper-catalyzed carbene insertion into the sulfur-sulfur bond of benzenesulfonothioate. Org Chem Front 5:1371–1374. https://doi.org/10.1039/C7QO01131H

    Article  CAS  Google Scholar 

  13. Hyde S, Veliks J, Liégault B, Grassi D, Taillefer M, Gouverneur V (2016) Copper-catalyzed insertion into heteroatom-hydrogen bonds with trifluorodiazoalkanes. Angew Chem 128:3849–3853. https://doi.org/10.1002/ange.201511954

    Article  Google Scholar 

  14. Ramakrishna K, Sivasankar C (2017) Iridium catalyzed acceptor/acceptor carbene insertion into N-H bonds in water. Org Biomol Chem 15:2392–2396. https://doi.org/10.1039/C7OB00177K

    Article  CAS  PubMed  Google Scholar 

  15. Fraile JM, L´opez-Ram-de-Viu P, Mayoral JA, Rold´an M, Santaf´e-Valero J (2011) Enantioselective C–H carbene insertions with homogeneous and immobilized copper complexes. Org Biomol Chem 9:6075. https://doi.org/10.1039/c1ob05499f

  16. Davies HML, Beckwith REJ (2003) Catalytic enantioselective C–H activation by means of metal-carbenoid-induced C–H insertion. Chem Rev 103:2861–2903. https://doi.org/10.1021/cr0200217

    Article  CAS  PubMed  Google Scholar 

  17. Wang S, Xu S, Yang C, Sun H, Wang J (2019) Formal carbene C–H bond insertion in the Cu(I)-catalyzed reaction of bis(trimethylsilyl)diazomethane with benzoxazoles and oxazoles. Org Lett 21:1809–1812. https://doi.org/10.1021/acs.orglett.9b00391

    Article  CAS  PubMed  Google Scholar 

  18. Xia Y, Liu Z, Liu Z, Ge R, Ye F, Hossain M, Zhang Y, Wang J (2014) Formal carbene insertion into C-C bond: Rh(I)-catalyzed reaction of benzocyclobutenols with diazoesters. J Am Chem Soc 136:3013–3015. https://doi.org/10.1021/ja500118w

    Article  CAS  PubMed  Google Scholar 

  19. Zhu SF, Zhou QL (2012) Transition-metal-catalyzed enantioselective heteroatom-hydrogen bond insertion reactions. Acc Chem Res 45:1365–1377. https://doi.org/10.1021/ar300051u

    Article  CAS  PubMed  Google Scholar 

  20. Gillingham D, Fei N (2013) Catalytic X-H insertion reactions based on car- benoids. Chem Soc Rev 42:4918–4931. https://doi.org/10.1039/c3cs35496b

    Article  CAS  PubMed  Google Scholar 

  21. Xia Y, Zhang Y, Wang J (2013) Catalytic cascade reactions involving metal carbene migratory insertion. ACS Catal 3:2586–2598. https://doi.org/10.1021/cs4006666

    Article  CAS  Google Scholar 

  22. Keipour H, Jalba A, Tanbouza N, Carreras V, Ollevier T (2019) α-Thiocarbonyl synthesis via the FeII-catalyzed insertion reaction of α-diazocarbonyls into S-H bonds. Org Biomol Chem 17:3098–3102. https://doi.org/10.1039/c9ob00261h

    Article  CAS  PubMed  Google Scholar 

  23. Durán R, Herrera B (2020) Theoretical study of the mechanism of catalytic enantioselective n-h and o-h insertion reactions. J Phys Chem 124:2–11. https://doi.org/10.1021/acs.jpca.9b07274

    Article  CAS  Google Scholar 

  24. Parr RG, Szentpály L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  25. Chamorro E, Chattaraj PK, Fuentealba P (2003) Variation of the electrophilicity index along the reaction path. J Phys Chem A 107:7068–7072. https://doi.org/10.1021/jp035435y

    Article  CAS  PubMed  Google Scholar 

  26. Chattaraj PK, Roy DR (2007) Update 1 of: electrophilicity index. Chem Rev 107:46–74. https://doi.org/10.1021/cr078014b

    Article  CAS  Google Scholar 

  27. Pérez P, Aizman A, Contreras R (2002) Comparison between experimental and theoretical scales of electrophilicity based on reactivity indexes. J Phys Chem A 106:3964–3966. https://doi.org/10.1021/jp014664m

    Article  CAS  Google Scholar 

  28. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106(14):4049–4050

    Article  CAS  Google Scholar 

  29. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  31. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc 120:215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  32. Mardirossian N, Head-Gordon M (2016) How accurate are the Minnesota density functionals for noncovalent interactions, isomerization energies, thermochemistry, and barrier heights involving molecules composed of main-group elements? J Chem Theory Comput 12:4303–4325. https://doi.org/10.1021/acs.jctc.6b00637

    Article  CAS  PubMed  Google Scholar 

  33. Lin YS, Li GD, Mao SP, Chai JD (2013) Long-range corrected hybrid density functionals with improved dispersion corrections. J Chem Theory Comput 9:263–272. https://doi.org/10.1021/ct300715s

    Article  CAS  PubMed  Google Scholar 

  34. Riplinger C, Neese F (2013) An efficient and near linear scaling pair natural orbital based local coupled cluster method. J Chem Phys 138:034106. https://doi.org/10.1063/1.4773581

    Article  CAS  PubMed  Google Scholar 

  35. Lian P, Johnston RC, Parks JM, Smith JC (2018) Quantum chemical calculation of pKas of environmentally relevant functional groups: carboxylic acids, amines, and thiols in aqueous solution. J Phys Chem A 122:4366–4374. https://doi.org/10.1021/acs.jpca.8b01751

    Article  CAS  PubMed  Google Scholar 

  36. Fukui K (1981) The path of chemical reactions—the IRC approach. Acc Chem Res 14:363–368. https://doi.org/10.1021/ar00072a001

    Article  CAS  Google Scholar 

  37. Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527. https://doi.org/10.1021/j100377a021

    Article  CAS  Google Scholar 

  38. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H (2016) Gaussian Inc 16, revision B.01. Gaussian Inc., Wallingford

  40. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78. https://doi.org/10.1002/wcms.81

    Article  CAS  Google Scholar 

  41. Zhurko G, Zhurko D (2017) ChemCraft, Version 1.8. http://www.chemcraftprog.com

  42. Legault C (2009) CYLview, Version 1.0b. http://www.cylview.org

  43. Boche G, Lohrenz JCW (2001) The electrophilic nature of carbenoids, nitrenoids, and oxenoids. Chem Rev 101:697–756. https://doi.org/10.1021/cr940260x

    Article  CAS  PubMed  Google Scholar 

  44. Davies HML, Antoulinakis EG (2001) Recent progress in asymmetric intermolecular C-H activation by rhodium carbenoid intermediates. J Organometall Chem 617–618:47–55. https://doi.org/10.1016/S0022-328X(00)00599-4

    Article  Google Scholar 

Download references

Funding

This article was funded by ANID FONDECYT REGULAR No. 1170837.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Herrera.

Ethics declarations

Conflict of interest

The authors do not declare conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 2127 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durán, R., Herrera, B. Theoretical study of the substituent effect on the O–H insertion reaction of copper carbenoids. Theor Chem Acc 141, 15 (2022). https://doi.org/10.1007/s00214-022-02876-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02876-8

Keywords

Navigation