Skip to main content
Log in

Aggregation or dispersion of Si atoms in Al–Si alloys? from the view point of energetics

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Al–Si binary system forms eutectic alloys with about 12% Si and their mechanical and physical properties are strongly related to the distribution of eutectic silicon in the microstructure. This paper studies the structures of Al32-nSin (n = 2, 4, 6, 8) crystals by using global evolutionary algorithm combined with density functional theories. The lowest energy structures are determined and the bonding strengths of the Al–Al, Al–Si and Si–Si bonds are evaluated. The binding energies of the alloy crystals increase considerably with the silicon content and the dispersion of silicon atoms is favorable for the stability. At given composition, the dispersion of Si atoms forms two Al–Si bonds at the expense of one Al–Al and one Si–Si bonds and the energy gain is 0.022 eV. The mechanical properties are investigated and the calculated moduli show that the shear modulus and Young’s modulus are related obviously to the silicon composition and distributions while the bulk moduli are quite close for all of the alloy structures. The moduli values are largest for Al28Si4 (its silicon content is close to the eutectic) and its Young’s modulus is 31% larger than the pure aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tiwary CS, Pandey P, Sarkar S et al (2022) Five decades of research on the development of eutectic as engineering materials[J]. Prog Mater Sci 123:100793

    Article  CAS  Google Scholar 

  2. Ashkenazi D (2019) How aluminum changed the world: a metallurgical revolution through technological and cultural perspectives[J]. Technol Forecast Soc 143:101–113

    Article  Google Scholar 

  3. Aamir M, Giasin K, Tolouei-Rad M et al (2020) A review: drilling performance and hole quality of aluminium alloys for aerospace applications[J]. J Mater Res Technol 9(6):12484–12500

    Article  CAS  Google Scholar 

  4. Zhang X, Chen Y, Hu J (2018) Recent advances in the development of aerospace materials[J]. Prog Aerosp Sci 97:22–34

    Article  Google Scholar 

  5. Miller WS, Zhuang L, Bottema J et al (2000) Recent development in aluminium alloys for the automotive industry[J]. Mat Sci Eng A 280:37–49

    Article  Google Scholar 

  6. Yang H, Gao T, Zhang H et al (2019) Enhanced age-hardening behavior in Al–Cu alloys induced by in-situ synthesized TiC nanoparticles[J]. J Mater Sci Technol 35:374–382

    Article  Google Scholar 

  7. Yang B, Wang Y, Gao M et al (2021) The response of mechanical property to the microstructure variation of an Al–Mg alloy by adding tin element[J]. Mat Sci Eng A 825:141901

    Article  CAS  Google Scholar 

  8. Huter P, Renhart P, Oberfrank S et al (2016) High- and low-cycle fatigue influence of silicon, copper, strontium and iron on hypo-eutectic Al–Si–Cu and Al–Si–Mg cast alloys used in cylinder heads[J]. Int J Fatigue 82:588–601

    Article  CAS  Google Scholar 

  9. Totten GE, Tiryakioğlu M, Kessler O (2018) Encyclopedia of aluminum and its alloys[M]. CRC Press, 2018.

  10. Wu Y, Liao H, Tang Y (2021) Enhanced high-cycle fatigue strength of Al–12Si–4Cu-1.2Mn-T6 cast aluminum alloy at room temperature and 350 C[J]. Mat Sci Eng A 825:141917

    Article  CAS  Google Scholar 

  11. Li J, Ye Z, Fu J et al (2020) Microstructure evolution, texture and laser surface HEACs of Al-Mg-Si alloy for light automobile parts[J]. Mater Charact 160:110093

    Article  CAS  Google Scholar 

  12. Li C, Xu J, Xu J et al (2016) Rounded silicon edges on the surface of Al–Si alloy cylinder liner by means of mechanical grinding treatment[J]. Tribol Int 104:204–211

    Article  CAS  Google Scholar 

  13. Su J, Nie X, Stoilov V (2010) Characterization of fracture and debonding of Si particles in AlSi alloys[J]. Mat Sci Eng A 527:7168–7175

    Article  Google Scholar 

  14. Ye H (2003) An overview of the development of Al-Si-alloy based material for engine applications[J]. J Mater Eng Perform 12:288–297

    Article  CAS  Google Scholar 

  15. Summer F, Pusterhofer M, Grün F et al (2020) Tribological investigations with near eutectic AlSi alloys found in engine vane pumps–Characterization of the material tribo-functionalities[J]. Tribol Int 146:106236

    Article  CAS  Google Scholar 

  16. Makhlouf MM, Guthy HV (2001) The aluminum–silicon eutectic reaction: mechanisms and crystallography[J]. J light metals 1:199–218

    Article  Google Scholar 

  17. Murray JL, McAlister AJ (1984) The Al-Si (aluminum-silicon) system[J]. Bull Alloy Phase Diagrams 5(1):74

    Article  CAS  Google Scholar 

  18. Hegde S, Prabhu KN (2008) Modification of eutectic silicon in Al–Si alloys[J]. J Mater Sci 43:3009–3027

    Article  CAS  Google Scholar 

  19. Hosch T, Napolitano RE (2010) The effect of the flake to fiber transition in silicon morphology on the tensile properties of Al–Si eutectic alloys[J]. Mat Sci Eng A 528:226–232

    Article  Google Scholar 

  20. Akyüz B (2016) Effect of silicon content on machinability of A–Si alloys[J]. Adv Sci Technol Res J 10:51–57

    Article  Google Scholar 

  21. Jeon JH, Shin JH, Bae DH (2019) Si phase modification on the elevated temperature mechanical properties of Al–Si hypereutectic alloys[J]. Mat Sci Eng A 748:367–370

    Article  CAS  Google Scholar 

  22. Nikanorov SP, Volkov MP, Gurin VN et al (2005) Structural and mechanical properties of Al–Si alloys obtained by fast cooling of a levitated melt[J]. Mat Sci Eng A 390:63–69

    Article  Google Scholar 

  23. Xu CL, Jiang QC (2006) Morphologies of primary silicon in hypereutectic Al–Si alloys with melt overheating temperature and cooling rate[J]. Mat Sci Eng A 437:451–455

    Article  Google Scholar 

  24. Wang S, Fu M, Li X et al (2018) Microstructure and mechanical properties of Al–Si eutectic alloy modified with Al–3P master alloy[J]. J Mater Process Tech 255:105–109

    Article  CAS  Google Scholar 

  25. Zhang L, Chen S, Li Q et al (2020) Formation mechanism and conditions of fine primary silicon being uniformly distributed on single αAl matrix in Al–Si alloys[J]. Mater Design 193:108853

    Article  CAS  Google Scholar 

  26. Barrirero J, Li J, Engstler M et al (2016) Cluster formation at the Si/liquid interface in Sr and Na modified Al–Si alloys[J]. Scripta Mater 117:16–19

    Article  CAS  Google Scholar 

  27. Haghayeghi R, Timelli G (2021) An investigation on primary Si refinement by Sr and Sb additions in a hypereutectic Al–Si alloy[J]. Mater Lett 283:128779

    Article  CAS  Google Scholar 

  28. Lee Y, Jung J, Kim S et al (2021) Effect of thermo-mechanical treatment and strontium addition on workability and mechanical properties of AlSiCu casting alloy[J]. Mater Charact 178:111256

    Article  CAS  Google Scholar 

  29. Srirangam P, Kramer MJ, Shankar S (2011) Effect of strontium on liquid structure of Al–Si hypoeutectic alloys using high-energy X-ray diffraction[J]. Acta Mater 59:503–513

    Article  CAS  Google Scholar 

  30. Liao H, Sun Y, Sun G (2002) Correlation between mechanical properties and amount of dendritic α-Al phase in as-cast near-eutectic Al–11.6% Si alloys modified with strontium[J]. Mat Sci Eng A 335:62–66

    Article  Google Scholar 

  31. Qin J, Pan S, Qi Y et al (2016) The structure and thermodynamic properties of liquid Al–Si alloys by ab initio molecular dynamics simulation[J]. J Non-Cryst Solids 433:31–37

    Article  CAS  Google Scholar 

  32. Huang X, Dong X, Liu L et al (2019) Liquid structure of Al-Si alloy: a molecular dynamics simulation[J]. J Non-Cryst Solids 503–504:182–185

    Article  Google Scholar 

  33. Chen B, Zhang C, Jin Y (2020) First-principles calculation of interface binding strength and fracture performance of β’/Al interface in Al–Mg–Si–Cu alloy[J]. J Alloy Compd 830:154515

    Article  CAS  Google Scholar 

  34. Lu Y, Zhang S, Wang Y et al (2022) Mechanical properties of Bʹ precipitates and fracture behavior of Bʹ/Al interface in Al–Mg–Si alloys: a first-principle calculation study[J]. Appl Surf Sci 571:151329

    Article  CAS  Google Scholar 

  35. Liang J, Liu Z, Rao K et al (2021) First-principles calculation for displacive phase transition of atomic-scale precipitates in aluminum alloys. Phys Lett A 411:127569

    Article  CAS  Google Scholar 

  36. Wang Y, Lu Y, Zhang S et al (2021) Analysis of interface properties and associated void of nanoscale Al precipitates in Al–Si alloys: first-principles calculations and experiment[J]. J Alloy Compd 873:159598

    Article  CAS  Google Scholar 

  37. Oganov AR, Glass CW (2006) Crystal structure prediction using ab initio evolutionary techniques: principles and applications[J]. J Chem Phys 124:244704

    Article  PubMed  Google Scholar 

  38. Glass CW, Oganov AR, Hansen N (2006) USPEX—Evolutionary crystal structure prediction[J]. Comput Phys Commun 175:713–720

    Article  CAS  Google Scholar 

  39. Lyakhov AO, Oganov AR, Stokes HT et al (2013) New developments in evolutionary structure prediction algorithm USPEX[J]. Comput Phys Commun 184:1172–1182

    Article  CAS  Google Scholar 

  40. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comp Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  41. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple[J]. Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  42. Gaudoin R, Foulkes WMC, Rajagopal G (2002) Ab initio calculations of the cohesive energy and the bulk modulus of aluminium[J]. J Phys: Condens Matter 14:8787–8793

    CAS  Google Scholar 

  43. Mouhat F, Coudert FX (2014) Necessary and sufficient elastic stability conditions in various crystal systems[J]. Phys Rev B 90:224104

    Article  Google Scholar 

  44. Hill R (1952) The elastic behaviour of a crystalline aggregate[J]. Proc Phys Soc A 65:349

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC, Grant No. 1216040199). We also thank National Supercomputer Centre in Shenzhen for computational resource.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongshan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary fil e1 (D OCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Chen, H. Aggregation or dispersion of Si atoms in Al–Si alloys? from the view point of energetics. Theor Chem Acc 141, 14 (2022). https://doi.org/10.1007/s00214-022-02873-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02873-x

Keywords

Navigation