Skip to main content
Log in

First-principle polarizabilities of nanosystems from auxiliary density perturbation theory with MINRES

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The iterative Krylov solver MINRES for linear equation systems has been implemented into auxiliary density perturbation theory. To this end, the MINRES solver was incorporated into the Eirola-Nevanlinna algorithm for large nonsymmetric matrices. As a result, the formal scaling of ADPT is reduced from \({\mathcal {O}}\)(\(N_{\rm {aux}}^4\)) to \({\mathcal {O}}\)(\(N_{\rm {aux}}^3\)), being \(N_{\rm {aux}}\) the number of auxiliary functions. Moreover, with MINRES this scaling can be further reduced by the use of the double asymptotic expansion of the two-center electron repulsion integrals. This state-of-the-art solver allows first-principles quantum-mechanical calculations of response properties for large systems with thousands of atoms at the nanometric scale. Comparison between the analytic and iterative solutions show excellent agreement for static and dynamical polarizabilities. To demonstrate the robustness of this newly implemented methodology, static polarizabilities of microbiologically relevant systems with more than 100,000 auxiliary functions and 28,000 basis functions are presented in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fournier R (1990) J Chem Phys 92(9):5422

    CAS  Google Scholar 

  2. Komornicki A, Fitzgerald G (1993) J Chem Phys 98(2):1398

    CAS  Google Scholar 

  3. Colwell SM, Murray CW, Handy NC, Amos RD (1993) Chem Phys Lett 210(1):261

    CAS  Google Scholar 

  4. Lee AM, Colwell SM (1994) J Chem Phys 101(11):9704

    CAS  Google Scholar 

  5. Ochsenfeld C, Head-Gordon M (1997) Chem Phys Lett 270(5):399

    CAS  Google Scholar 

  6. Weber V, Niklasson AMN, Challacombe M (2004) Phys Rev Lett 92:1932002

    Google Scholar 

  7. Weber V, Niklasson AMN, Challacombe M (2005) J Chem Phys 123(4):044106

    PubMed  Google Scholar 

  8. Niklasson AMN, Weber V (2007) J Chem Phys 127(6):064105

    PubMed  Google Scholar 

  9. Kussmann J, Ochsenfeld C (2007) J Chem Phys 127(20):204103

    PubMed  Google Scholar 

  10. Coriani S, Host S, Jansik B, Thogersen L, Olsen J, Jorgensen P, Reine S, Pawlowski F, Helgaker T, Salek P (2007) J Chem Phys 126(15):154108

    PubMed  Google Scholar 

  11. Kobayashi M, Touma T, Nakai H (2012) J Chem Phys 136(8):084108

    PubMed  Google Scholar 

  12. Dovesi R, Kirtman B, Maschio L, Maul J, Pascale F, Rérat M (2019) J Phys Chem C 123(13):8336

    CAS  Google Scholar 

  13. Maschio L, Kirtman B (2020) J Chem Theory Comput 16(1):340

    PubMed  Google Scholar 

  14. Schattenberg CJ, Reiter K, Weigend F, Kaupp M (2020) J Chem Theory Comput 16(2):931

    CAS  PubMed  Google Scholar 

  15. McWeeny R (1992) Methods of molecular quantum mechanics. Academic Press, London

    Google Scholar 

  16. Mejía-Rodríguez D, Delgado Venegas RI, Calaminici P, Köster AM (2015) J Chem Theory Comput 11(4):1493

  17. Pedroza-Montero JN, Delesma-Díaz FA, Delgado-Venegas RI, Calaminici P, Köster AM (2016) Theor Chem Acc 135:230

    Google Scholar 

  18. Flores-Moreno R, Melin J, Ortiz JV, Merino G (2008) J Chem Phys 129(22):224105

    PubMed  Google Scholar 

  19. Flores-Moreno R (2010) J Chem Theory Comput 6(1):48

    CAS  PubMed  Google Scholar 

  20. Delgado-Venegas RI, Mejía-Rodríguez D, Flores-Moreno R, Calaminici P, Köster AM (2016) J Chem Phys 145(22):224103

    PubMed  Google Scholar 

  21. Zúniga-Gutiérrez B, Cota LG, Pedroza-Montero JN, Köster AM, to be submitted (XXXX)

  22. Flores-Moreno R, Köster AM (2008) J Chem Phys 128(13):134105

    PubMed  Google Scholar 

  23. Pedroza-Montero JN, Morales JL,  Álvarez Ibarra A,  Geudtner G,  Calaminici P, Köster AM, (2020) J Chem Theory Comput 16, 2965

  24. Eirola T, Nevanlinna O (1989) Linear Algebra Appl 121:511

    Google Scholar 

  25. Delesma-Díaz F, (2020) Range separated hybrid functionals in auxiliary density functional theory. Ph.D. Thesis, Cinvestav

  26. Zúñiga-Gutiérrez B, Köster AM (2016) Mol Phys 114(7–8):1026

    Google Scholar 

  27. Köster AM,  Geudtner G, Gamboa GU,  Álvarez-Ibarra A,  Calaminici P,  Flores-Moreno R,  Goursot A,  de la Lande A,  Mejía-Rodríguez D,  Mineva T, Petterson LGM, Vázquez-Pérez, B. Zúñiga-Gutiérrez JM. (2020) The deMon2k Users Guide. http://www.demon-software.com/public_html/download/manual/manual.pdf. Accessed: 16-04-2020

  28. Köster AM (2003) J Chem Phys 118(22):9943

    Google Scholar 

  29. Álvarez-Ibarra A, Köster AM (2013) J Chem Phys 139(2):024102

    PubMed  Google Scholar 

  30. Mejía-Rodríguez D (2015) Low-order scaling methods for auxiliary density functional theory. Ph.D. Thesis, Cinvestav

  31. Perdew J, Erzenhof M, Burke K (1996) J Chem Phys 105:9982

    CAS  Google Scholar 

  32. Guan J, Duffy P, Carter JT, Chong DP, Casida KC, Casida ME, Wrinn M (1993) J Chem Phys 98(6):4753

    CAS  Google Scholar 

  33. Chong DP (1992) J Chin Chem Soc 39(5):375

    CAS  Google Scholar 

  34. Calaminici P, Janetzko F, Köster AM, Mejía-Olvera R, Zuñiga-Gutierrez B (2007). J Chem Phys. https://doi.org/10.1063/1.2431643

    Article  PubMed  Google Scholar 

  35. Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Can J Phys 70(2):560

    CAS  Google Scholar 

  36. Perdew JP, Yue W (1986) Phys Rev B 33:8800

    CAS  Google Scholar 

  37. Rega N, Cossi M, Barone V (1996) J Chem Phys 105(24):11060

    CAS  Google Scholar 

  38. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58(8):1200

    CAS  Google Scholar 

  39. Carmona-Espíndola J (2012) Time-dependent auxiliary density perturbation theory: development, implementation and applications. Ph.D. Thesis, Cinvestav

  40. Perkins AJ (1964) J Phys Chem 68(3):654

    CAS  Google Scholar 

  41. Bishop DM, Cheung LM (1982) J Phys Chem 11(1):119

    CAS  Google Scholar 

  42. Spackman MA (1989) J Phys Chem 93(22):7594

    CAS  Google Scholar 

  43. Alms GR, Burnham A, Flygare WH (1975) J Chem Phys 63(8):3321

    CAS  Google Scholar 

  44. Miller CK, Orr BJ, Ward JF (1981) J Chem Phys 74(9):4858

    CAS  Google Scholar 

  45. Bridge NJ, Buckingham AD, Linnett JW (1966) Proc R Soc London Series A 295(1442):334

    CAS  Google Scholar 

  46. Bogaard MP, Buckingham AD, Pierens RK, White AH (1978) J Chem Soc Faraday Trans 1(74):3008

    Google Scholar 

  47. Bogaard M, Buckingham A, Ritchie G (1982) Chem Phys Lett 90(3):183

    CAS  Google Scholar 

  48. Murphy WF (1977) J Chem Phys 67(12):5877

    CAS  Google Scholar 

  49. Bohne A, Lang E, von der Lieth CW (1998) Mol Mod Ann 4(1):33

    CAS  Google Scholar 

  50. Tuukkanen S, Toppari JJ, Kuzyk A, Hirviniemi L, Hytönen VP, Ihalainen T, Törmä P (2006) Nano Lett 6(7):1339

    CAS  PubMed  Google Scholar 

  51. Tuukkanen S, Kuzyk A, Toppari JJ, Häkkinen H, Hytönen VP, Niskanen E, Rinkiö M, Törmä P (2007) Nanotechnology 18:295204

    Google Scholar 

  52. Mignon P, Loverix S, Steyaert J, Geerlings P (2005) Nucleic Acids Res 33(6):1779

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Regtmeier J, Eichhorn R, Bogunovic L, Ros A, Anselmetti D (2010) Anal Chem 82(17):7141

    CAS  PubMed  Google Scholar 

  54. Zhao H (2011) Phys Rev E 84:021910

    Google Scholar 

  55. Cuervo A, Dans PD, Carrascosa JL, Orozco M, Gomila G, Fumagalli L (2014) Proc Natl Acad Sci 111:E3624

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang Y, Lao K, Wilkins D, Grisafi A, Ceriotti M, DiStassio R Jr (2019) Sci Data 6:152

    PubMed  PubMed Central  Google Scholar 

  57. Cao W, Chern M, Dennis AM, Brown KA (2019) Nano Lett 19(8):5762

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Mishra S, Mondal AK, Pal S, Das TK, Smolinsky EZB, Siligardi G, Naaman R (2020) J Phys Chem C 124(19):10776

    CAS  Google Scholar 

  59. Indumathi K, Abiram A, Praveena G (2020) Mol Phys 118(1):e1584682

    Google Scholar 

  60. Cheng R, Martens J, Fridgen TD (2020) Phys Chem Chem Phys 22:11546

    CAS  PubMed  Google Scholar 

  61. Jung G, Kasper S, Schmid F (2019) J Electrochem Soc 166(9):B3194

    CAS  Google Scholar 

  62. van der Touw F, Mandel M (1974) Biophys Chem 2(3):231

    PubMed  Google Scholar 

  63. Washizu H, Kikuchi K (2006) J Phys Chem B 110(6):2855

    CAS  PubMed  Google Scholar 

  64. Tomic S, Babi SD, Vuletic T, Krca S, Ivankovic D, Griparic L, Podgornik R (2007) Phys Rev E 75:021905

    CAS  Google Scholar 

Download references

Acknowledgements

J.N.P.M. gratefully acknowledges CONACyT Ph.D. fellowship 245798. This work was performed and supported by the SENER-CONACyT program 280158. Financial support from the CONACyT projects 252658 and A1-S-11929 is acknowledged. For the program development and benchmark calculations computational resources from the CONACyT infrastructure project GIC 268251 and the SEP-Cinvestav project 65 were used.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jesús N. Pedroza-Montero or Patrizia Calaminici.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles “20th deMon Developers Workshop”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedroza-Montero, J.N., Calaminici, P. & Köster, A.M. First-principle polarizabilities of nanosystems from auxiliary density perturbation theory with MINRES. Theor Chem Acc 141, 7 (2022). https://doi.org/10.1007/s00214-021-02864-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02864-4

Keywords

Navigation